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Preface – Version 3.0

ALE 3.0 is completely compatible with ALE 2.0 grammars, and adds the following
new features:

� A semantic-head-driven generator, based on the algorithm presented in
Shieber et al. (1990). The generator was adapted to the logic of typed fea-
ture structures by Octav Popescu in his Carnegie Mellon Master’s Thesis,
Popescu (1996). Octav also wrote most of the generation code for this re-
lease. Grammars can be compiled for parsing only, generation only, or both.
Some glue-code is also available from the ALE homepage, to parse and gen-
erate with different grammars through a unix pipe.

� A source-level debugger with a graphical XEmacs interface. This debugger
works only with SICStus Prolog 3.0.6 and higher. A debugger with reduced
functionality will be made available to SWI Prolog users in a later release.
This debugger builds on, and incorporates the functionality of the code for
the SICStus source-level debugger, written by Per Mildner at Uppsala Uni-
versity.

� Functional descriptions. Instead of binding variables in a descrip-
tion and calling a procedural attachment, e.g., a cons f:X,g:Y,h:Z goal

append(X,Y,Z), it is now possible to incorporate certain functional relations
into descriptions themselves, e.g., a cons f:X,g:Y,h:append(X,Y).

� a /1 atoms. There are now an infinite number of atoms (types with no ap-
propriate features), implicitly declared in every signature. These atoms can
be arbitrary Prolog terms, including unbound variables, and can be used
wherever normal ALE types can, e.g., f:(a p(3.7)). a /1 atoms are exten-
sional as Prolog terms, i.e., are taken to be identical according to the Prolog
predicate, ==/2. In particular, this means that ground atoms behave exactly
as ALE extensional types.

� Optional edge subsumption checking. For completeness of parsing, one
only needs to ensure that, for every pair of nodes in the chart, the most gen-
eral feature structure spanning those nodes is stored in the chart. This can
reduce the number of edges in many domains.

� An autonomous intro/2 operator. Features can now be declared on their
own in a separate part of the grammar.

� Default specifications for types. These are NOT default types. If a type ap-
pears on the right-hand side of a sub/2 or intro/2 specification, but not on

vi
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the left-hand side of one, ALE will assume this type is maximal, i.e., assume
the specification, Type sub []. Similarly, if it occurs on a left-hand side,
but not on a right-hand side, ALE will assume the type is immediately sub-
sumed by bot, the most general type. In both cases, ALE will announce these
assumptions during compilation.

� Several bug corrections and more compile-time warning and error mes-
sages.

� An SWI Prolog 2.9.7 port. Version 3.0 will be the last version for which we
will port the system to Quintus Prolog. We will now support ALE for SICStus
Prolog and SWI Prolog. The SICStus version of the system works for SICStus
Prolog 3.0.5 and higher, except for the source-level debugger, which requires
version 3.0.6.

We would like to thank all of the users who have supplied us with feedback
and suggestions over the past few years for how to improve ALE. In particular, we
would like to thank Ion Androutsopoulos, Mike Calcagno, Mats Carlsson, Fred-
erik Fouvry, Gertjan van Noord, Peter van Roy, Margriet Verlinden, and Jan Wiele-
maker for their patient assistance. This release incorporates many, but unfortu-
nately not all of those changes. Quite a few more will be made in the next several
releases, along with many performance improvements.

Bob Carpenter and Gerald Penn
Murray Hill and Tuebingen, March 1998



Preface – Version 2.0

ALE 2.0 is a proper extension of version 1.0. Specifically, version 2.0 will run any
grammar that will run under version 1.0. But version 2.0 includes many exten-
sions to version 1.0, including the following.

� Inequations

� Extensionality

� General Constraints on Types

� Mini-interpreter

� Error-suppression

Inequations allow inequational constraints to be imposed between two struc-
tures. Extensionality allows structures of specified types to be identified if they
are structurally identicial. Together, these provide the ability to simulate Pro-
log II programs (Colmerauer 1987). ALE 2.0 also allows general constraints to
be placed on types, using arbitrary descriptions from the constraint language,
including path equations, inequations and disjunctions, and procedural attach-
ments. It also has a mini-interpreter, which allows the user to traverse and edit an
ALE parse tree. Error messages for incompatible descriptions are now automati-
cally disabled during lexicon and empty category compilation.

The second release of ALE, Version 2.0, is based on an extension of the first ver-
sion of ALE, that was completed for Gerald Penn’s (1993) MS Project in the Com-
putational Linguistics Program at Carnegie Mellon University.

There are many people whom we would like to thank for their comments and
feedback on version 1.0 and �-versions of 2.0. These people have actually used
the system in their research and have thus had the best opportunity to provide
us with practical feedback. First, we would like to thank the first group of users,
housed at Sharp Laboratories of Europe, located in Oxford, England, including
Pete Whitelock, Antonio Sanfillipo, and Osamu Nishida. They not only used the
system but provided feedback on the code. Secondly, the group at University of
Tübingen, who are developing a competing system, Troll, have rigorously tested
existing systems, including ALE, both for their ability to express grammars nat-
urally and for efficiency. Specifically, we would like to thank Detmar Meurers,
Dale Gerdemann, Thilo Götz, Paul King, John Griffith, and Erhard Hinrichs. John
and Thilo also provided the changes necessary for the system to run directly in
Quintus Prolog. This group is undoubtedly the best informed when it comes to
implemented grammar formalisms. We would also like to thank the grammar
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development group at Stanford University, including Ivan Sag, Chris Manning,
Suzanne Riehemann. We would further like to thank Bob Kasper, Carl Pollard,
and Andreas Kathol of the Ohio State University, for a great deal of feedback on the
design of HPSG grammars in general, and ALE implementations of them in par-
ticular. Chris Manning, in addition, found a bug in SICStus Prologs prior to 2.1.8,
which prevented cyclic structures from being used in completed chart edges, a
bug found by both Steven Bird of Edinburgh and C. J. Rupp of IDSIA. Their feed-
back on Bob Carpenter’s prototype implementation of HPSG for English led to
the design of Gerald Penn’s much more comprehensive implementation of HPSG
and was the primary impetus for the importation of general type constraints into
version 2.0. Next, we would like to thank Claire Gardent, who has been using
ALE to develop discourse grammars in Amsterdam. We should also thank Carsten
Guenther and Markus Walther, of the Universities of Hamburg and Düsseldorf,
respectively, who have used the system to develop phonological grammars. Fi-
nally, we should thank Michael Mastroianni, who implemented a comprehensive
approach to constraint-based phonology in ALE (Mastroianni 1993). He suffered
through early, buggy versions of the system, thus sparing the rest of us much of
that pain. The feedback we received from these users was invaluable.

We would like to thank EAGLES, the European Advisory Group on Linguis-
tic Engineering Standards, for allowing us to present our system at a meeting
in Saarbrücken in March 1993 of the European Expert Group on Linguistic For-
malisms devoted to implemented formalisms. We learned a great deal from the
other participants in the workshop including especially Jochen Dörre, Michael
Dorna, and Martin Emele, of Stuttgart, and Andreas Podelski, then associated
with the Digital Equipment Paris Research Lab. We also benefitted from discus-
sions with Hans Uszkoreit, Rolf Backofen, and Uli Krieger, of Saarbrücken, Steve
Pulman from SRI in Cambridge, and C. J. Rupp and Graham Russell, of ISSCO in
Switzerland.

We had many discussions of the ALE formalism at the HPSG workshop running
concurrently with the LSA Linguistic Institute in Columbus. We would especially
like to thank Gregor Erbach for comments on our system, including benchmark
test results. We would also like to thank Hiroshi Tusda, of the Institute for New
Gernateion Computer Technology, for discussion of our systems and compar-
isons to his system, cu-Prolog. We also discussed ALE heavily during the workshop
on implementations of attribute-value logics, during the 1993 Summer School
on Logic, Language, and Information in Lisbon, Portugal. We especially bene-
fitted from discussions with Suresh Manandhar, of the University of Edinburgh,
and Gerrit Rentier of Tilburg University, and Gert Webelhuth of the University of
North Carolina, among those we have not already thanked. We also benefitted
from discussions with Ed Stabler and Mark Johnson, and from sitting in on their
class on the implementation of constraint-based grammars.

We would also like to thank Ann Copestake and Ted Briscoe, of the Cambridge
Computing Laboratory, for feedback on the design of the system.

We would like to thank Richard O’Keefe, who provided some invaluable feed-
back on coding style. Of course, any glitches or failure to follow his excellent ex-
ample are our own.

We would also like to thank Elizabeth Hinkelman, who runs the Software Reg-
istry, and Mark Kantrowitz, who administers the Prolog Resource Guide and the
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Prime Time Freeware for AI CD-ROM. They have helped in publicizing the system
description as well as providing access.

The extensions we have not made, though would like to, include the addition
of:

� Primitive, Atomic Data Types

� Parametric Types

� Partial Type Inference

� Assert Mode in Compiler

� Peephole Code Optimization

� Subsumption Checking of Chart Edges

The incorporation of Prolog data types such as Real, Integer, Character, and
String, is straightforward theoretically, but not so straightforward in terms of ALE.
The same goes for parametric polymorphism at the type level. Partial type infer-
ence could provide a great deal of optimization in some circumstances. We could
not figure out how to incoprorate these three changes without drastically modi-
fying the underlying representations and algorithms. The remaining changes are
lying dormant because we have other obligations.

The next wave of development of attribute-logic grammars should not be in
Prolog, but rather through the use of a direct abstract machine. Bob Carpenter
has worked on an abstract machine with Yan Qu, in the context of her MS project
in the Carnegie Mellon Computational Linguistics Program, and with Shuly Wint-
ner, of the Technion, in Haifa, Israel, who is writing a PhD dissertation on the
topic. Such an undertaking is also underway among the LIFE community, led by
Hassan Aı̈t-Kaci, Andreas Podelski, and Peter van Roy.

We would like to thank a number of people for discovering bugs and providing
comments on Version 2.0: Ingo Schroeder, Frank Morawietz, Detmar Meurers,
Rob Malouf, Frederik Fouvry, Jo Calder, and Suresh Manandhar.

Finally, we would like to thank Jo Calder,Chris Brew, Kevin Humphreys, and
Mike Reape, who developed the Pleuk grammar development environment as
well as interfacing it to ALE. Details of that system can be found in the appro-
priate Appendix.

This material is based upon work supported under a National Science Foun-
dation Graduate Research Fellowship (for Gerald Penn). Any opinions, findings,
conclusions or recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of the National Science Foun-
dation.

Bob Carpenter and Gerald Penn
Pittsburgh, August 1994



Preface – Version Beta

A number of people have asked me to make this system, along with its documen-
tation, available to the public. Now that it’s available, I hope that it’s useful. But
a word of caution is in order. The system is still only a prototype, hence the label
“version �.”

Any bug reports would be greatly appreciated. But what I’d really like is com-
ments on the functionality of the system, as well as on the utility of its documen-
tation. I am also interested in hearing of any applications that are made of the
system. I would also be glad to answer questions about the system. I have tried to
document the strategies used by ALE in this guide. I have also tried to comment
the code to the point where it might be adaptable by others. I would, of course,
be interested in any kind of improvements or extensions that are discovered or
developed, and would like to have the chance to incorporate any such improve-
ments in future versions of this package.

In the implementation, I have endeavored to follow the logic programming
methodology laid out by O’Keefe (1990), but there are many spots where I have
fallen short. Thus the code is not as fast as it could be, even in Prolog. But I view
this system more as a prototype, indicating the utility of a typed logic program-
ming and grammar development system. Borrowing techniques from the WAM

directly, implementing an abstract machine C, would lead to roughly a 100-fold
speedup, as there is no reason that ALE should be slower than Prolog itself.

I would like to acknowledge the help of Gerald Penn in working through many
implementation details of a general constraint resolver, which was the inspiration
for this implementation. This version of the system is a great improvement on the
last version due to Gerald’s work on the system. Secondly, I would like to thank
Michael Mastroianni, who has actually used the system to develop grammars for
phonology. Finally, I would like to thank Carl Pollard and Bob Kasper for looking
over a grammar of HPSG coded in ALE and providing the impetus for the inclusion
of empty categories and lexical rules.

The system is available without charge from the author. It is designed to run
in either SICStus or Quintus Prologs.
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Chapter 1

Introduction

This report serves as an introduction to both the ALE formalism and its Prolog
implementation. ALE is an integrated phrase structure parsing and definite clause
logic programming system in which the terms are typed feature structures. Typed
feature structures combine type inheritance and appropriateness specifications
for features and their values. The feature structures used in ALE generalize the
common feature structure systems found in the linguistic programming systems
PATR-II and FUG, the grammar formalisms HPSG and LFG, as well as the logic pro-
gramming systems Prolog-II and LOGIN. Programs in any of these languages can
be encoded directly in ALE.

Terms in grammars and logic programs are specified in ALE using a typed ver-
sion of Rounds and Kasper’s attribute-value logic with variables. At the term level,
we have variables, types, feature value restrictions, path equations, inequations,
general constraints, and disjunction. The definite clause programs allow disjunc-
tion, negation and cut, specified with Prolog syntax. Phrase structure grammars
are specified in a manner similar to DCGs, allowing definite clause procedural at-
tachment. The grammar formalism also fully supports empty categories. Lexical
development is supported by a very general form of lexical rule which operates on
both categories and surface strings. Macros are available to help organize large
descriptions, either in programs or in grammars. Both definite clause programs
and grammars are compiled into abstract machine instructions. These instruc-
tions are then interpreted by an emulator compiled from the type specifications.
Like Prolog compilers, a structure copying strategy is used for matching both def-
inite clauses and grammar rules.

For parsing, ALE compiles from the grammar specification a Prolog-optimized
bottom-up, dynamic chart parser. Definite clauses are also compiled into Prolog.
As it stands, the current version of ALE, running the feature-structure-based naive
reverse of a 30-element list on top of the SICStus 3.7 native code compiler, runs
at roughly 152,300 logical inferences per second (LIPS) on a Sun Ultra Enterprise
450. This is slightly faster than the speed of the SICStus 3.7 interpreter on the
Prolog naive reverse, 60% as fast as SWI Prolog 3.2.7, and about 9% as fast as the
SICStus 3.7 compact-code compiler. The definite clause compiler performs last
call optimization, but does not index first arguments or use specialised list cells
at the WAM level. Thus it will perform relatively well versus non-optimized inter-
preters, but lag further behind compiled grammars when programs are written in

1



2 CHAPTER 1. INTRODUCTION

a more sophisticated manner than naive reverse.
Full details of the theory behind ALE can be found in Carpenter (1992).
The user who is only interested in definite clause programming can skip the

material on phrase structure grammars, while those interested in only grammars
without procedural attachments may skip the material in the section on definite
clauses.



Chapter 2

TRALE Introduction

TRALE is an extension of the ALE system that supports some extra functional-
ity (most importantly, complex-antecedent constraints), and that automatically
adds extra constraints to grammars in order to enforce the view of subtyping
standardly assumed in Head-driven Phrase Structure Grammar. TRALE is im-
plemented as a pre-processor for ALE that intercepts certain grammar clauses at
compile-time to generate extra code for the ALE compiler. This code is used inter-
nally — no new ALE grammar is generated. As a result of TRALE’s different view of
subtyping, many grammars will behave very differently with TRALE than they do
with ALE .

The sections of this manual marked either with TRALE-EXTENSION (HTML)
or with a T page-number prefix (PS, PDF) describe these extra features. Complex-
antecedent constraints are discussed in Section T4.3. Subtype covering con-
straints, and the HPSG style of subtyping that they support are discussed in Sec-
tion T4.1.2. They also present some extra syntactic constructs that TRALE can
use, including signature declaration files (Section T4.1), logical-variable macros,
macro hierarchies and macro generation tools (Section T4.2).

The Grisu graphical interface that is distributed with TRALE is described in
Chapter E.

Grisu was developed by Holger Wunsch of Eberhard-Karls-Universität
Tübingen and Detmar Meurers of Ohio State University. The signature file parser
was developed as part of the ConTroll system by Thilo Götz, Stephan Kepser, Dale
Gerdemann, and Detmar Meurers at Eberhard-Karls-Universität Tübingen. The
macro hierarchy and macro generation components were developed by Detmar
Meurers. The lexical rule compiler described in Chapter 7 was developed by Det-
mar Meurers, Vanessa Metcalf and Markus Dickinson of Ohio State University.
Integration of [incr tsdb()] and the DFKI graphical parsing chart display was per-
formed by Stefan Müller of Universität Bremen, based in part upon earlier work
by Frederik Fouvry at Eberhard-Karls-Universität Tübingen.
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Chapter 3

Prolog Preliminaries

While it is not absolutely necessary, some familiarity with logic programming in
general, and Prolog in particular, is helpful in understanding the definite clause
portion of ALE. Similarly, experience with unification grammar systems such as
PATR-II, DCGs, or FUG is helpful in understanding the phrase structure compo-
nent of the system. In particular, writing efficient programs and grammars in ALE

involves the same kinds of strategies necessary for writing efficient programs in
Prolog or PATR-II. For those not familiar with Prolog, the sequence of two books
by Sterling and Shapiro (1986) and by O’Keefe (1990) are excellent general intro-
ductions to the theory and practice of logic programming. For those not familiar
with unification-based grammar formalisms, Shieber (1986), Gazdar and Mellish
(1987) and Pereira and Shieber (1987) are useful resources.

For those not familiar with Prolog, we need to point out the salient features of
the language which will be assumed throughout this report. This section contains
all of the information necessary about Prolog required to run ALE.

3.1 Terms

A Prolog constant is composed of either a sequence of characters and/or under-
scores, beginning with a lower case letter, a number, or any sequence of symbols
surrounded by apostrophes. So, abc, johnDoe, b 17, 123, 'JohnDoe', '65$',
and ' 65a.' are constants, but A19, JohnDoe, B 112, au8, and [dd,e] are not
(although see the warning at the end of this section). A variable, on the other
hand, is any string of letters, underscores or numbers beginning with a capital
letter. Thus C, C foo, and TR5ab are variables, but 1Xa, aXX, and Xy1 are not.

In general, it is a bad idea to have constants or variables which are only distin-
guished by the capitalization of some of their letters. For instance, while aBa and
aba are different constants, they should not both be used in one program. One
reason for this in the context of ALE is that the output routines adopt standard
capitalization conventions which hide the differences between such constants.

Warning: As pointed out to us by Ingo Schroeder, constants or atoms begin-
ning with a capital letter are not treated properly by the compiler. Thus constants

1Technically, a variable may begin with an underscore, but such variables, said to be anonymous,
have a very different status than those which begin with a capital letter. The use of anonymous
variables is discussed later.

3
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such as 'Foo' should not be used.

3.2 Space and Comments

In your own program and grammar files, extra whitespace between symbols be-
yond that needed to separate constants or variables is ignored. Whitespace con-
sists of either spaces, blank lines or line breaks are ignored. This allows you to
format your programs in a manner that is readable. Furthermore, any symbols
on a line appearing after a % symbol are treated as comments and ignored.

3.3 Running Prolog

To fire up Prolog locally, you should contact your systems administrator. You
should have either SICStus or SWI Prolog, or a Prolog compiler compatible with
one of these. Once Prolog is fired up, you will see a prompt. The Prolog prompt
should look like:

| ?-

It is important that Prolog be invoked from a directory for which the user has
write permission. ALE, in the process of compiling user programs, writes a num-
ber of local files.

3.4 Queries

What you type after the prompt is called a query. Queries should always end with
a period and be followed by a carriage return. In fact, all of the grammar rules,
definite clauses, macros and lexical entries in your programs should also end
with periods. Most of the interface in ALE is handled directly by top-level Prolog
queries. Many of these will return yes or no after they are called, the significance
of which within ALE is explained on a query by query basis.

3.5 Running ALE

To run ALE, it is only necessary to type the following query:

| ?- compile(ale).

assuming that ale.pl is the file in which ALE resides. SWI Prolog users must type:

| ?- consult(ale).

If ale.pl is not local to the directory from which Prolog was invoked, a path-name
can be added in single-quotes. The syntax of pathnames is operating-system spe-
cific.

In SICStus Prolog, when ALE is loaded, it turns on Prolog character escapes.
ALE will not be able to generate code properly during compilation without this.
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T3.1 Running TRALE

Similarly, to run TRALE, one types:

| ?- compile(trale).

assuming that trale.pl is the file in which TRALE resides, or, in SWI Prolog:

| ?- consult(trale).

TRALE needs to load several other files (including ale.pl). All of these files are
assumed to live in the directory from which Prolog is executed. If this is not true,
set the TRALE HOME environment variable to point to the directory in which
TRALE is installed before running Prolog from that shell.
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3.6 Compiling a Grammar

Once ALE has been loaded, you can load and compile an ALE grammar as follows:

| ?- compile gram(hpsg).

where hpsg.pl, for example, is the name of your grammar file (or the name of the
file that loads different components of a grammar from other files). This consults
the grammar as Prolog source, and compiles it as ALE source.
NOTE: if you only load your grammar with a Prolog command:

| ?- consult(hpsg).

ALE will not be able to parse or execute other queries with it. You must use
compile gram/0 (if already consulted) or compile gram/2.

3.7 Exiting Prolog and Breaking

To exit from Prolog, you can type halt at any prompt (followed by a period, of
course).

If you find Prolog hanging at some point, and you are working on a standard
Unix implementation, typing control-c should produce something like the fol-
lowing message:

Prolog interruption (h for help)?

You should reply with the character a, with or without a following period, followed
by a carriage return. If this doesn’t work, typing control-z should take you out of
Prolog altogether.

3.8 Saved States

All information concerning an ALE state is encoded in the current Prolog state.
Thus, any options presented by your version of Prolog to save states should be
able to save ALE states. Saving run-time stacks is only necessary to preserve a
currently executing parse or other top-level ALE query, not compiled code.



Chapter 4

Feature Structures, Types and
Descriptions

This section reviews the basic material from Carpenter (1992), Chapters 1–10,
which is necessary to use ALE.

4.1 Inheritance Hierarchies

ALE is a language with strong typing. What this means is that every structure
it uses comes with a type. These types are arranged in an inheritance hierar-
chy, whereby type constraints on more general types are inherited by their more
specific subtypes, leading to what is known as inheritance-based polymorphism.
Inheritance-based polymorphism is a cornerstone of object-oriented program-
ming. In this section, we discuss the organization of types into an inheritance
hierarchy. Thus many types will have subtypes, which are more specific instances
of the type. For instance, person might have subtypes male and female.

ALE does much of its processing of types at compile time, as it is reading and
processing the grammar file. Thus the user is required to declare all of the types
that will be used along with the subtyping relationship between them. An exam-
ple of a simple ALE type declaration is as follows:

bot sub [b,c]. % two basic types -- b and c

b sub [d,e].

d sub [g,h].

e sub [].

c sub [d,f]. % b and c unify to d

f sub [].

There are quite a few things to note about this declaration. The types declared
here are bot, b, c, d, e, f and g. Note that each type that is mentioned gets
its own specification. Of course, the whitespace is not important, but it is con-
venient to have each type start its own line. A simple type specification consists
of the name of the type, followed by the keyword sub, followed by a list of its sub-
types (separated by whitespace). In this case, bot has two subtypes, b and c, while
f, d and e have no subtypes. The subtypes are specified by a Prolog list. In this

6
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case, a Prolog list consists of a sequence of elements separated by commas and
enclosed in square brackets. Note that no whitespace is needed between the list
brackets and types, between the types and commas, or between the final bracket
and the period. Whitespace is only needed between constants. The extra whites-
pace on successive lines is conventional, indicating the level in the ordering for
the user, but is ignored by the program. Also notice that there are comments on
two of the lines; recall that comments begin with a % sign and continue the length
of the line. Every type (except a /1 atoms, discussed below) must have at most
one sub declaration, i.e., all of the immediate subtypes must be declared in one
declaration.

The subtyping relation is only specified by immediate subtyping declarations;
but subtyping itself is transitive. Thus, in the example, d is a subtype of c, and c

is a subtype of bot, so d is also a subtype of bot. The user only needs to specify
the direct subtyping relationship. The transitive closure of this relation is com-
puted by the compiler. While redundant specifications, such as putting d directly
on the subtype list of bot, will not alter the behavior of the compiler, they are
confusing to the reader of the program and should be avoided. In addition, the
derived transitive subtyping relationship must be anti-symmetric. In particular,
this means that there should not be two distinct types each of which is a subtype
of the other.

There are two additional restrictions on the inheritance hierarchy beyond the
requirement that it form a partial order. First, there is a special type bot, which
must be declared as the unique most general type. In other words, every type
must be a subtype of bot. If a type is used on the left-hand side of a sub declara-
tion, but never declared as a sub-type of anything else, it is assumed that this type
is an immediate subtype of bot. Similarly, ALE assumes that all types for which no
subtypes are declared are maximal, i.e., have no subtypes.

The second and more subtle restriction on type hierarchies is that they be
bounded complete. Since type declarations must be finite, this amounts to the
restriction that every pair of types which have a common subtype have a unique
most general common subtype. In the case at hand, b and c have three common
subtypes, d, g, and h. But these subtypes of b and c are ordered in such a way
that d is the most general type in the set, as both g and h are subtypes of d. An
example of a type declaration violating this condition is:

bot sub [a,b].

a sub [c,d].

c sub [].

d sub [].

b sub [c,d].

The problem here is that while a and b have two common subtypes, namely c and
d, they do not have a most general common subtype, since c is not a subtype of d,
and d is not a subtype of c. In general, a violation of the bounded completeness
condition such as is found in this example can be patched without destroying
the ordering by simply adding additional types. In this case, the following type
hierarchy preserves all of the subtyping relations of the one above, but satisfies
bounded completeness:
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bot sub [a,b].

a sub [e].

e sub [c,d].

c sub [].

d sub [].

b sub [e].

In this case, the new type e is the most general subtype of a and b.
This last example brings up another point about inheritance hierarchies.

When a type only has one subtype, the system provides a warning message (as
opposed to an error message). This condition will not cause any compile-time
or run-time errors, and is perfectly compatible with the logic of the system. It is
simply not a very good idea from either a conceptual or implementational point
of view. For more on this topic, see Carpenter (1992:Chapter 9).

4.2 Feature Structures

The primary representational device in ALE is the typed feature structure. In
phrase structure grammars, feature structures model categories, while in the def-
inite clause programs, they serve the same role as first-order terms in Prolog, that
of a universal data structure. Feature structures are much like the frames of AI
systems, the records of imperative programming languages like C or Pascal, and
the feature descriptions used in standard linguistic theories of phonology, and
more recently, of syntax.

Rather than presenting a formal definition of feature structures, which can be
found in Carpenter (1992:Chapter 2), we present an informal description here.
In fact, we begin by discussing feature structures which are not necessarily well-
typed. In the next section, the type system is presented.

A feature structure consists of two pieces of information. The first is a type.
Every feature structure must have a type drawn from the inheritance hierarchy.
The other kind of information specified by a feature structure is a finite, possibly
empty, collection of feature/value pairs. A feature value pair consists of a feature
and a value, where the value is itself a feature structure. The difference between
feature structures and the representations used in phonology and in GPSG, for
instance, is that it is possible for two different substructures (values of features at
some level of nesting) to be token identical in a feature structure. Consider the
following feature structure drawn from the lexical entry for John in the categorial
grammar in the appendix, displayed in the output notation of ALE:

cat

QSTORE e_list

SYNSEM basic

SEM j

SYN np

The type of this feature structure is cat, which is interpreted to mean it is a cat-
egory. It is defined for two features, QSTORE and SYNSEM. As can be seen from this
example, we follow the HPSG notational convention of displaying features in all
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caps, while types are displayed in lower case. Also note that features and their
values are printed in alphabetic order of the feature names. In this case, the value
of the QSTORE feature is the simple feature structure of type e list,1 which has no
feature values. On the other hand, the feature SYNSEM has a complex feature as
its value, which is of type basic, and has two feature values SEM and SYN, both of
which have simple values.

This last feature structure doesn’t involve any structure sharing. But consider
the lexical entry for runs:

cat

QSTORE e_list

SYNSEM backward

ARG basic

SEM [0] individual

SYN np

RES basic

SEM run

RUNNER [0]

SYN s

Here there is structure sharing between the path SYNSEM ARG SEM and the path
SYNSEM RES SEM RUNNER, where a path is simply a sequence of features. This
structure sharing is indicated by the tag [0]. In this case, the sharing indicates
that the semantics of the argument of runs fills the runner role in the semantics
of the result. Also note that a shared structure is only displayed once; later occur-
rences simply list the tag. Of course, this example only involves structure sharing
of a very simple feature structure, in this case one consisting of only a type with
no features. In general, structures of arbitrary complexity may be shared, as we
will see in the next example.

ALE, like Prolog II and HPSG, but unlike most other systems, allows cyclic struc-
tures to be processed and even printed. For instance, consider the following rep-
resentation we might use for the liar sentence This sentence is false:

[0] false

ARG1 [0]

In this case, the empty path and the feature ARG1 share a value. Similarly, the
path ARG1 ARG1 ARG1 and the path ARG1 ARG1, both of which are defined, are also
identical. But consider a representation for the negation of the liar sentence, It is
false that this sentence is false:

false

ARG1 [0] false

ARG1 [0]

Unlike Prolog II, ALE does not necessarily treat these two feature structures as be-
ing identical, as it does not conflate a cyclic structure with its infinite unfolding.

1Set values, like those employed in HPSG, are not supported by ALE. In the categorial grammar
in the appendix, they are represented by lists and treated by attached procedures for union and
selection.
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We take up the notion of token identical structures in the section below on exten-
sionality.

It is interesting to note that with typed feature structures, there is a choice be-
tween representing information using a type and representing the same informa-
tion using feature values. This is a familiar situation found in most inheritance-
based representation schemes. Thus the relation specified in the value of the path
SYNSEM RES SEM is represented using a type, in:

SEM run

RUNNER [0]

An alternative encoding, which is not without merit, is:

SEM unary_rel

REL run

ARG1 [0]

In general, type information is processed much more efficiently than feature
value information, so as much information as possible should be placed in the
types. The drawback is that type information must be computed at compile-time
and remain accessible at run-time. More types simply require more memory.2

4.3 Subsumption and Unification

Feature structures are inherently partial in the information they provide. Based
on the type inheritance ordering, we can order feature structures based on how
much information they provide. This ordering is referred to as the subsumption
ordering. The notion of subsumption, or information containment, can be used
to define the notion of unification, or information combination. Unification con-
joins the information in two feature structures into a single result if they are con-
sistent and detects an inconsistency otherwise.

4.3.1 Subsumption

We define subsumption, saying that F subsumes G, if and only if:

� the type of F is more general than the type of G

� if a feature f is defined in F then f is also defined in G such that the value
in F subsumes the value in G

� if two paths are shared in F then they are also shared in G

Consider the following examples of subsumption, where we let < stand for sub-
sumption:

agr < agr

PERS first PERS first

NUM plu

2In general, the amount of memory required to represent n types is proportional to the number
of pairs of consistent types. In the worst case, this isO(n2) in the number of types.
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sign phrase

SUBJ agr < SUBJ agr

PERS pers PERS first

NUM plu

sign sign

SUBJ agr SUBJ [0] agr

PERS first PERS first

NUM plu < NUM plu

OBJ agr OBJ [0]

PERS first

NUM plu

false false [1] false

ARG1 false < ARG1 [0] false < ARG1 [1]

ARG1 false ARG1 [0]

Note that the second of these subsumptions holds only if pers is a more general
type than first, and sign is a more general type than phrase. It is also important
to note that the feature structure consisting simply of the type bot will subsume
every other structure, as the type bot is assumed to be more general than every
other type.

4.3.2 Unification

Unification is an operation defined over pairs of feature structures that combines
the information contained in both of them if they are consistent and fails oth-
erwise. In ALE, unification is very efficient.3 Declaratively, unifying two feature
structures computes a result which is the most general feature structure sub-
sumed by both input structures. But the operational definition is more enlighten-
ing, and can be given by simple conditions which tell us how to unify two struc-
tures. We begin by unifying the types of the structures in the type hierarchy. This
is why we required the bounded completeness condition on our inheritance hi-
erarchies; we want unification to produce a unique result. If the types are in-
consistent, unification fails. If the types are consistent, the resulting type is the
unification of the input types. Next, we recursively unify all of the feature values
of the structures being unified which occur in both structures. If a feature only
occurs in one structure, we copy it over into the result. This algorithm terminates
because we only need to unify structures which are non-distinct and there are a
finite number of nodes in any input structure.

Some examples of unification follow, where we use + to represent the opera-
tion:

3Using a typed version of the Martelli and Montanari (1982) algorithm, which was adapted to
cyclic structures by Jaffar (1984), unification can be performed in what is known as quasi-linear
time in the size of the input structures, where in this case, quasi-linear in n is defined to be O(n �
ack�1(n)), where ack

�1 is the inverse of Ackermann’s function, which will never exceed 4 or 5 for
structures that can be represented on existing computers. There is also a factor in the complexity of
unification stemming from the type hierarchy and appropriateness conditions, which we discuss
below.
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agr + agr = agr

PERS first NUM plu PERS first

NUM plu

sign sign sign

SUBJ agr + SUBJ [0] bot = SUBJ [0] agr

PERS 1st OBJ [0] PERS first

OBJ agr NUM plu

NUM plu OBJ [0]

t t t

F [0] t + F t = F [1] t

G [0] F [1] F [1]

G [1] G [1]

agr + agr = *failure*

PERS first PERS second

e_list + ne_list = *failure*

HD a

TL e_list

Note that the second example respects our assumption that the type bot is the
most general type, and thus more general than agr. The second example illus-
trates what happens in a simple case of structure sharing: information is retrieved
from both the SUBJ and OBJ and shared in the result. The third example shows
how two structures without cycles can be unified to produce a structure with a
cycle. Just as the feature structure bot subsumes every other structure, it is also
the identity with respect to unification; unifying the feature structure consisting
just of the type bot with any feature structure F results simply in F . The last two
unification attempts fail, assuming that the types first and second and the types
e list and ne list are incompatible.

4.4 Inequations

Feature structures may also incorporate inequational constraints following (Car-
penter 1992), which is in turn based on the notion of inequation in Prolog II
(Colmerauer 1987). For instance, we might have the following representation of
the semantics of a sentence:

SEM binary_rel

REL know

ARG1 [0] referent

GENDER masc

PERS third

NUM sing

ARG2 [1] referent

GENDER masc
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PERS third

NUM sing

[0] =\= [1]

Below the feature information, we have included the constraint that the value of
the structure [0] is not identical to that of structure [1]. As a result, we cannot
unify this structure with the following one:

REL know

ARG1 [2]

ARG2 [2]

Any attempt to unify the structures [0] and [1] causes failure.

4.5 Type System

As we mentioned in the introduction, what distinguishes ALE from other ap-
proaches to feature structures and most other approaches to terms, is that there is
a strong type discipline enforced on feature structures. We have already demon-
strated how to define a type hierarchy, but that is only half the story with respect
to typing. The other component of our type system is a notion of feature appro-
priateness, whereby each type must specify which features it can be defined for,
and furthermore, which types of values such features can take. The notion of ap-
propriateness used here is similar to that found in object-oriented approaches to
typing. For instance, if a feature is appropriate for a type, it will also be appropri-
ate for all of the subtypes of that type. In other words, appropriateness specifica-
tions are inherited by a type from its supertypes. Furthermore, value restrictions
on feature values are also inherited. Another important consideration for ALE’s
type system is the notion of type inference, whereby types for structures which
are underspecified can be automatically inferred. This is a property our system
shares with the functional language ML, though our notion of typing is only first-
order. To further put ALE’s type system in perspective, we note that type inheri-
tance must be declared by the user at compile time, rather than being inferred.
Furthermore, types in ALE are semantic, in Smolka’s (1988b) terms, meaning that
types are used at run-time. Even though ALE employs semantic typing, the type
system is employed statically (at compile-time) to detect type errors in grammars
and programs.

As an example of an appropriateness declaration, consider the simple type
specification for lists with a head/tail encoding:

bot sub [list,atom].

list sub [e_list,ne_list].

e_list sub [].

ne_list sub []

intro [hd:bot,

tl:list].

atom sub [a,b].

a sub [].

b sub [].
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This specification tells us that a list can be either empty (e list) or non-empty
(ne list). It implicitly tells us that an empty list cannot have any features defined
for it, since none are declared directly or inherited from more general types. The
declaration also tells us that a non-empty list has two features, representing the
head and the tail of a list, and, furthermore, that the head of a list can be any-
thing (since every structure is of type bot), but the tail of the list must itself be
a list. Note that features must also be Prolog constants, even though the output
routines convert them to all caps. The appropriateness declaration, intro, can
be specified along with subsumption, as shown above, or separately; but for any
given type, all features must be declared at once. If no intro declaration is given
for a type, it is assumed that that type introduces no appropriate features. If an
intro declaration is made for a type that does not occur on either side of a sub

declaration, that type is assumed to be an immediate subtype of bot with no sub-
types of its own. If a value restrictor (such as list above for feature tl) does not
occur on either side of a sub declaration, it too is assumed to be maximal and an
immediate subtype of bot.

In ALE, every feature structure must respect the appropriateness restrictions
in the type declarations. This amounts to two restrictions. First, if a feature is de-
fined for a feature structure of a given type, then that type must be appropriate
for the feature. Furthermore, the value of the feature must be of the appropri-
ate type, as declared in the appropriateness conditions. The second condition
goes the other way around: if a feature is appropriate for a type, then every fea-
ture structure of that type must have a value for the feature. A feature structure
respecting these two conditions is said to be totally well-typed in the terminol-
ogy of Carpenter (1992, Chapter 6).4 For instance, consider the following feature
structures:

list

HD a

TL bot

ne_list

HD bot

TL ne_list

HD atom

TL list

ne_list

HD [0] ne_list

HD [0]

TL [0]

TL e_list

4The choice of totally well-typed structures was motivated by the desire to represent feature
structures as records at run-time, without listing their features. Internally, a feature structure is
represented as a term of the form Tag-Sort(V1,...,VN) where Tag represents the token identity of
the structure using a Prolog variable, Sort is the type of structure, and V1 through VN are the values
of the appropriate features, in alphabetical order of the features’ names, which are themselves left
implicit. Furthermore, the Tag is used for forwarding and dereferencing during unification.
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The first structure violates the typing condition because the type list is not ap-
propriate for any features, only ne list is. But even if we were to change its type
to ne list, it would still violate the type conditions, because bot is not an appro-
priate type for the value of TL in a ne list. On the other hand, the second and
third structures above are totally well-typed. Note that the second such structure
does not specify what kind of list occurs at the path TL TL, nor does it specify what
the HD value is, but it does specify that the second element of the list, the TL HD

value is an atom, but it doesn’t specify which one.
To demonstrate how inheritance works in a simple case, consider the specifi-

cation fragment from the categorial grammar in the appendix:

functional sub [forward,backward]

intro [arg:synsem,

res:synsem].

forward sub [].

backward sub [].

This tells us that functional objects have ARG and RES features. Because forward

and backward are subtypes of functional, they will also have ARG and RES fea-
tures, with the same restrictions.

There are a couple of important restrictions placed on appropriateness con-
ditions in ALE. The most significant of these is the acyclicity requirement. This
condition disallows type specifications which require a type to have a value which
is of the same or more specific type. For example, the following specification is
not allowed:

person sub [male,female]

intro [father:male,

mother:female].

male sub [].

female sub [].

The problem here is the obvious one that there are no most general feature struc-
tures that are both of type person and totally well-typed.5 This is because any
person must have a father and mother feature, which are male and female re-
spectively, but since male and female are subtypes of person, they must also have
mother and father values. It is significant to note that the acyclicity condition
does not rule out recursive structures, as can be seen with the example of lists.
The list type specification is acceptable because not every list is required to have
a head and tail, only non-empty lists are. The acyclicity restriction can be stated
graph theoretically by constructing a directed graph from the type specification.
The nodes of the graph are simply the types. There is an edge from every type
to all of its supertypes, and an edge from every type to the types in the type re-
strictions in its features. Type specifications are only acceptable if they produce
a graph with no cycles. One cycle in the person graph is from male to person (by
the supertype relation) and from person to male (by the FATHER feature). On the
other hand, there are no cycles in the specification of list.

5The only finite feature structures that could meet this type system would have to be cyclic, as
noted in Carpenter (1992). The problem is that there is no most general such cyclic structure, so
type inference cannot be unique.
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The second restriction placed on appropriateness declarations is designed to
limit non-determinism in much the same way as the bounded completeness con-
dition on the inheritance hierarchy. This second condition requires every feature
to be introduced at a unique most general type. In other words, the set of types
appropriate for a feature must have a most general element. Thus the following
type declaration fragment is invalid:

a sub [b,c,d].

b sub []

intro [f:w,

g:x].

c sub []

intro [f:y,

h:z].

d sub [].

The problem is that the feature F is appropriate for types b and c, but there is
not a unique most general type for which it’s appropriate. In general, just like
the bounded completeness condition, type specifications which violate the fea-
ture introduction condition can be patched, without violating any of their existing
structure, by adding additional types. In this case, we add a new type between a

and the types b and c, producing the equivalent well-formed specification:

a sub [e,d].

e sub [b,c]

intro [f:bot].

b sub []

intro [f:w,

g:x].

c sub []

intro [f:y,

h:z].

d sub [].

This example also illustrates how subtypes of a type can place additional restric-
tions on values on features as well as introducing additional features.

As a further illustration of how feature introduction can be obeyed in general,
consider the following specification of a type system for representing first-order
terms:

sem_obj sub [individual,proposition].

individual sub [a,b].

a sub [].

b sub [].

proposition sub [atomic_prop,relational].

atomic_prop sub [].

relational_prop sub [unary_prop,transitive_prop]

intro [arg1:individual].

unary_prop sub [].

transitive_prop sub [binary_prop,ternary_prop]
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intro [arg2:individual].

binary_prop sub [].

ternary_prop sub []

intro [arg3:individual].

In this case, unary propositions have one argument feature, binary propositions
have two argument features, and ternary propositions have three argument fea-
tures, all of which must be filled by individuals.

4.6 Interaction with the signature

� show_approp(+<type>). shows the appropriateness conditions of a type

� show_subtypes(+<type>). shows a mini typehierarchy with the immediate
subtypes of <type>

� show_all_subtypes(+<type>). shows the complete typehierarchy below
<type>

� show_supertypes(+<type>). shows the immediate supertypes of <type>

� show_all_supertypes(+<type>). shows the hierarchy below the most gen-
eral type bot and type <type>, including only those types which are direct
or indirect supertypes of <type>
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T4.1 TRALE Signatures

T4.1.1 Signature specification files

As an alternative to the sub/2 and intro/2 declarations that ALE grammars use
to specify their signatures, TRALE can instead read a special signature file, which
follows the format discussed in this section.

By default, this alternative is used when TRALE is loaded. You can switch back
to sub/2 and intro/2 declarations in the grammar by setting the subintro flag to
grammar:

| ?- ale flag(subintro, ,grammar).

To reactivate the use of signature files, reset the subintro flag to file:

| ?- ale flag(subintro, ,file).

The ale flag/3 command is discussed in more detail in Chapter G.
TRALE signature files are specified using a separate text file with subtyping in-

dicated by indentation as in the following example signature:

type_hierarchy

bot

a f:bool g:bool

b f:plus g:minus

c f:minus g:plus

bool

plus

minus

.

The example shows a type hierarchy with a most general element bot, which im-
mediately subsumes types a and bool. Type a introduces two features F and G

whose values must be of type bool. Type a also subsumes two other types b and
c. The F feature value of the former is always plus and its G feature value is always
minus. The feature values of type c are the inverse of type b. Finally, bool has two
subtypes plus and minus.

As shown in the example, appropriate features are written after the types that
introduce them. The type of the value of a feature is separated from the feature by
a colon as in f:bool, which says the feature F takes a value of type bool. Note that
subtypes are written at a consistent level of increased indentation. This means
that if a type is introduced at column C, then all its subtypes must be introduced
directly below it at column C + n. The only requirements on the choice of n are
that it be greater than zero, and that one value is consistently used throughout a
signature file. n = 2 is recommended. Inconsistent indentation causes an error.

A grammar can only use one signature file, and there can only be one type
hierarchy in a signature file. If more than one type hierarchy is declared in the
same signature file, only the first one is used by TRALE . By default, the signature
file is assumed to be named signature, and is assumed to live in the directory
from which Prolog was started. The signature/1 directive in a grammar file tells
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TRALE to look for the signature file in the path given as its argument instead. The
syntax of this pathname is operating-system specific.

Types are syntactically Prolog atoms, which means that they have to start with
a lower-case letter and only consist of letters and numbers (e.g. bot, bool, dtr1).
New types are introduced in separate lines. Each informative line must contain
at least a type name. A type may never occur more than once as the subtype of
the same supertype. It can, however, occur as a subtype of two or more different
supertypes — this is called multiple inheritance. In this case, one prefixes the sub-
type with an ampersand (&) to indicate that the multiple inheritance is intended.

There may be zero or more features introduced for each type. As mentioned
before, these have the form feature:value-restriction. All feature-value pairs
are separated by white space and they should appear in the same line. Recall that,
feature is the name of a feature and value is the value restriction for that feature.
As with the types, a feature name must always start with a lower case letter. If a
feature is specified for a type, all its subtypes inherit this feature automatically.
As in ALE , in cases of multiple inheritance, the value restriction on any feature
that has been inherited from the supertypes is the union of those value restric-
tions. A single period (.) in an otherwise blank line signals the end of a signature
declaration.

TRALE signature specifications also allow for a /1 atoms as potential value re-
strictions, as described in Section 4.8.

As another example, let us see how the type hierarchy in Figure 4.1 translates
into a TRALE signature. As the figure shows, the type agr, which is immediately
subsumed by ?, introduces three features person, number and gender. These fea-
tures are of types per, num and gen respectively. The TRALE translation of this hier-
archy is shown below. Note that 1st, 2nd and 3rd are respectively shown as first,
second, and third because a Prolog atom has to begin with a lower-case letter.

type_hierarchy

bot

per

first

second

third

num

singular

plural

1st 2nd 3rd singular plural feminine masculine

per num gen agr
PERSON:per
NUMBER:num
GENDER:gen

?

Figure 4.1: A sample type hierarchy
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gen

feminine

masculine

agr person:per number:num gender:gen

.

T4.1.2 Subtype covering

TRALE assumes that subtypes exhaustively cover their supertypes, i.e., that every
object of a non-maximal type, t, is also of one of the maximal types subsumed
by t. This is only significant when the appropriateness conditions of t’s maximal
subtypes on the features appropriate to t do not cover the same products of
values as t’s appropriateness conditions. Let us look at the following type
hierarchy for example.

t1 t2
F:+ F:�
G:� G:+

t

F:bool

G:bool

In this hierarchy, there are no t objects with identically typed or structure-shared
F and G values as in the following feature structures:

�
F 1

G 1

��
F +

G +

��
F �

G �

�

Unlike ALE , TRALE does not recognise the existence of feature structures with
such combinations of feature values. However, if TRALE detects that only one
subtype’s product of values is consistent with a feature structure’s product of
values, it will promote the product to that consistent subtype’s product. Thus, in
our example, a feature structure:

2
4t

F +

G bool

3
5

will be promoted automatically to the following. Note that the type itself will not
be promoted to t1.

2
4t

F +

G �

3
5



T17-4 CHAPTER 4. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

To consider a simple example from HPSG, English verbs are typically assumed
to have the following two features in order to distinguish auxiliary verbs from
main verbs and also to show whether a subject-auxiliary inversion has taken
place.

2
4verb

AUX bool
INV bool

3
5

The values for the AUX and INV features are taken to be of type bool. However,
note that there cannot be any verbal type with the following combination of
feature values:

�
AUX �

INV +

�

That is, there are no verbs in English that can occur before the subject and not be
auxiliaries. Thus, using TRALE’s interpretation of sub-typing, we can prevent this
undesirable combination with the following type hierarchy:

type_hierarchy

bot

bool

plus

minus

verb aux:bool inv:bool

aux_verb aux:plus inv:bool

main_verb aux:minus inv:minus

.
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4.7 Extensionality

ALE also respects the distinction between intensional and extensional types (see
Carpenter (1992:Chapter 8). The concept of extensional typing has its origins in
the assumption in standard treatments of feature structures, that there can only
be one copy of any atom (a feature structure with no appropriate features) in a
feature structure. Thus, if path �1 leads to atom a, and path �2 leads to atom a,
then the values for those two paths are token-identical. Token-identity refers to
an identity between two feature structures as objects, as opposed to structure-
identity, which refers to an identity between two feature structures that contain
the same information.

Smolka (1988a) partitioned his atoms according to whether more than one
copy could exist or not. In ALE, following Carpenter (1992), this notion of copya-
bility has been extended to arbitrary types – loosely speaking, those types which
are copyable we call intensional, and those which are not we call extensional.
Thus, it is possible to have two feature structures of the same intensional type
which, although they may be structure-identical, are not token-identical. For-
mally:

Given the set of types, Type, defined by an ALE signature, we desig-
nate a subset, ExtType � Type, as the set of extensional types. With
the exception of a /1 atoms, discussed below, this set consists only of
maximally specific types, i.e., for each � 2 ExtType, there is no type �
such that � subsumes � .

The restriction of ExtType to maximally specific types is peculiar to ALE, and is
levied in order to reduce the computational complexity of enforcing extensional-
ity.6

We need one more definition to formally state the effect which an extensional
type has on feature structures in ALE.

Given a set of extensional types, ExtType, we define an equivalence
relation, �, the collasping relation, on well-typed feature structures,
such that F1 � F2 for F1 6= F2 only if:

� F1 has the same type, �, as F2, and � 2 ExtType, and

� for every feature, f , appropriate to �, F f
1

, the value of f in F1, and
F f
2

, the value of f in F2, are defined, and F f
1
� F f

2
.

In ALE, all feature structures behave as if they are what Carpenter (1992) referred
to as collapsed. That is, the only collapsing relation that exists between any two
feature structures is the trivial collapsing relation, namely:

F1 � F2 if and only if F1 is token-identical to F2.

In the case of acyclic feature structures, this definition is equivalent to saying that
two feature structures of the same extensional type are token-identical if and only

6In theory (Carpenter 1992), this set is only required to be upward closed, which means that
if � 2 ExtType, and � subsumes � , then � 2 ExtType. This relaxation of our requirement that
extensional types be maximal would actually not be too difficult to implement.
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if, for every feature appropriate to that type, their respective values on that feature
are token-identical. For example, supposing that we have a signature represent-
ing dates, then the two substructures representing dates in the following structure
must be token identical.

married_person

BIRTHDAY [1] date

DAY 12

MONTH nov

YEAR 1971

SPOUSE BIRTHDAY [1] date

DAY 12

MONTH nov

YEAR 1971

In other words, this represents a person born on 12 November 1971, who is mar-
ried to a person with the same birthdate.

Now consider a slightly more complex example, which employs the following
signature.

bot sub [a,b,c,g].

a sub []

intro [f:b,g:c].

b sub [].

c sub [].

g sub []

intro [h:a,j:a].

If a, b, and c are extensional, then the values of H and J in g are always token-
identical, i.e., every feature structure of type g satisfies:

g

H [0] a

F b

G c

J [0]

But if only a, and b are extensional, and c is intensional, then the values of H and J

are not necessarily token-identical, although they are always structure-identical:

g

H a

F [1] b

G c

J a

F [1]

G c

To cite an earlier example, suppose we were to specify that the type false,
used in the liar sentence and its negation, were extensional. Now the liar sen-
tence’s representation is:
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[0] false

ARG1 [0]

as before, but the negation of the liar sentence would also be represented by:

[0] false

ARG1 [0]

since if were still represented by:

[1] false

ARG1 [0] false

ARG1 [0]

then we could cite a non-trivial collasping relation, �, in which [1] � [0].
As a related example, consider:

s

A [0] t

C [0]

B [1] t

C [1]

Assuming that t is extensional and only appropriate for the feature C, then the
structures [0] and [1] in the above structure would be identified.

Extensionality allows the proper representation of feature structures and
terms in both PATR-II, the Rounds-Kasper system, and in Prolog and Prolog II. For
PATR-II and the Rounds-Kasper system, all atoms (those types with no appropri-
ate features) are assumed to be extensional. Furthermore, in the Rounds-Kasper
and PATR-II systems, which are monotyped, there is only one type that is appro-
priate for any features, and it must be appropriate for all features in the grammar.
In Prolog and Prolog II, the type hierarchy is assumed to be flat, and every type is
extensional.

Just as with implementations of Prolog, collapsing is only performed as it
is needed. As shown by Carpenter (1992), collapsing can be restricted to cases
where inequations are tested between two structures, with exactly the same fail-
ure behavior. It turns out to be less efficient to collapse structures before asserting
them into ALE’s parsing chart, primarily because the time to test arbitrary struc-
tures for collapsibility is at least quadratic in the size of the structures being col-
lapsed. See the section below on inequations for further discussion. Currently,
extensionality is only enforced before the answer to a user query is given.

Extensional types in ALE are specified all at once in a list:

ext([ext1; : : : ; extn]):

in the same file in which the subsumption relation is defined. All types that are
not mentioned in the ext specification are assumed to be intensional, except
ALE’s a /1 atoms, discussed below, which have the same extensionality as Prolog
terms, i.e., if they are ground or have the same variables in the same positions.7

These do not need to be declared as such. If more than one ext specification is
given, the first one is used. If no ext specification is given, then the specification:

7This is given by the == operator in Prolog.
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ext([]).

is assumed. If a type occurs in ext/1, but does not appear on the left or right-hand
side of a sub declaration, it assumed to be maximal, and immediately subsumed
by bot.

Of course, collapsing is only enforced between feature structures whose life-
spans in ALE8 overlap. So, for example, if one request is made for the representa-
tion of the liar sentence:

[0] false

ARG1 [0]

and then another is made for that of its negation, the output is not:

[0]

(referring to the same token above) but rather:

[0] false

ARG1 [0]

Every time a new context arises, numbering of structures begins again from [0].

4.8 a /1 Atoms

ALE also provides an infinite collection of atoms. These are of the form:

a Term

where Term is a prolog term. Two a /1 atoms subsume each other if and only if
their terms subsume each other as prolog terms. As a result, no two different,
ground atoms subsume each other; and the most general atom of this collection
is a . They implicitly exist in every type hierarchy, with a being immediately
subsumed by bot, and with every ground atom being maximal. a /1 atoms are
extensional; and non-ground a /1 atoms are extensionally identical as Prolog
terms, i.e., if they have the same variables in the same positions. For example,
a f(X) and a g(X) are not taken to be the same atom, nor are a f(X) and a

f(f(X), nor are a f(X) and a f(Y). But a f(X) and a f(X) are. Their status in
the type hierarchy should not be explicitly declared, nor should the fact that they
bear no features, nor should their extensionality.

Some care must be exercised when using non-ground atoms in chart edges.
ALE’s chart parser copies edges, including the Prolog variables inside a /1 atoms.
When these variables are copied, identity among variables within a single edge
is preserved, but identity among variables between different edges may be lost.
Because ALE delays the enforcement of extensional type checking, this could re-
sult in ALE losing a path equation between two atoms. The best way to avoid this
is always to use ground atoms in chart edges. Otherwise, the user should at least

8The life-span of a feature structure in ALE is the period from its creation to the point when
the user command currently being executed finishes, unless that feature structure is asserted as
an edge in ALE’s chart parser. In this case, the life of the feature structure ends when the edge is
removed. Every new request for a parse to ALE removes all of the current edges.
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avoid relying on extensional identity when writing grammars by not using the ALE

built-in @= or inequations between non-ground atoms from different edges.
If the user requires intensional atoms, they must be explicitly declared. There

must also be no user-defined type, a , in the type hierarchy. Certain arguments
to a /1 cannot be used, such as a itself, and other prolog reserved words, such as
mod, unless they are used with the proper operator precedence and proper num-
ber of arguments to be parsed by Prolog.

Otherwise, a /1 atoms can be used wherever a normal type can. They are par-
ticularly useful as members of large domains that are too tedious to define, such
as phonology attributes in natural language grammars, or to pass extra-logical
information around a parse tree, such as numbers representing probabilities. To
declare a feature’s value as any a /1 atom, use a :

sign intro [phon:(a_ _)].

The parentheses are recommended for readability, but not necessary. Because
subsumption among a /1 atoms mirrors subsumption as prolog terms, one can
also declare features appropriate for only certain kinds of atoms. For example:

sign intro [phon:(a_ phon(_))].

declares PHON appropriate to any atom whose term’s functor is phon/1.
Structure-sharing between a /1 prolog terms in feature appropriateness dec-

larations is ignored by ALE. For example, the declaration:

foo intro [f:(a_ X),g:(a_ X)].

is treated as:

foo intro [f:(a_ _),g:(a_ _)].

ALE does respect structure-sharing between a /1 prolog terms in descriptions.

4.9 Attribute-Value Logic

Now that we have seen how the type system must be specified, we turn our atten-
tion to the specification of feature structures themselves. The most convenient
and expressive method of describing feature structures is the logical language de-
veloped by Kasper and Rounds (1986), which we modify here in three ways. First,
we replace the notion of path sharing with the more compact and expressive no-
tion of variable due to Smolka (1988a). Second, we extend the language to types,
following Pollard (in press). Finally, we add inequations.

The collection of descriptions used in ALE can be described by the following
BNF grammar:

<desc> ::= <type>

| <variable>

| (<feature>:<desc>)

| (<desc>,<desc>)

| (<desc>;<desc>)

| (=\= <desc>)



4.9. ATTRIBUTE-VALUE LOGIC 23

As we have said before, both types and features are represented by Prolog con-
stants. Variables, on the other hand, are represented by Prolog variables. As in-
dicated by the BNF, no whitespace is needed around the feature selecting colon,
conjunction comma and disjunction semi-colon, but any whitespace occurring
will be ignored.

These descriptions are used for picking out feature structures that satisfy
them. We consider the clauses of the definition in turn. A description consist-
ing of a type picks out all feature structures of that type. A variable can be used
to refer to any feature structure, but multiple occurrences of the same variable
must refer to the same structure. A description of the form (<feature>:<desc>)

picks out a feature structure whose value for the feature satisfies the nested de-
scription. An inequation =n= <desc> is satisfied by those feature structures that
are not token-identical to the feature structure described by <desc>. Inequations
are discussed in more detail below.

There are two ways of logically combining descriptions: following Prolog, the
comma represents conjunction and the semi-colon represents disjunction. A fea-
ture structure satisfies a conjunction of descriptions just in case it satisfies both
conjuncts, while it satisfies a disjunction of descriptions if it satisfies either of the
disjuncts.

We should also add to the above BNF grammar the following line:

<desc> ::= (<path> == <path>)

This is an equational description, of which inequations are the negation.
Equational or inequational descriptions are satisfied by the presence or ab-
sence, respectively, of token-identity. In particular, an inequation between two
structurally-identical feature structures can be satisfied, while a path equation
can only be satisfied by two structurally-identical feature structures, but is not
necessarily satisfied.

All instances of equational descriptions can be captured by using multiple oc-
currences of variables. For example, the description:

([arg1]==[arg2])

is equivalent to the description:

(arg1:X,arg2:X).

assuming there are no other occurrences of X.
Standard assumptions about operator precedence and association are fol-

lowed by ALE, allowing us to omit most of the parentheses in descriptions. In
particular, equational descriptions bind the most tightly, followed by feature se-
lecting colon, then by inequations, then conjunction and finally disjunction. Fur-
thermore, conjunction and disjunction are left-associative, while the feature se-
lector is right-associative. For instance, this gives us the following equivalences
between descriptions:

a, b ; c, d ; e = (a,b);(c,d);e

a,b,c = a,(b,c)
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f:g:bot,h:j = (f:(g:bot)),(h:j)

f:g: =\=k,h:j = (f:(g: =\=(k))),(h:j)

f:[g]==[h],h:j = (f:([g]==[h])),(h:j)

Note that a space must occur between =n= and other operators such as :.
A description may be satisfied by no structure, a finite number of structures

or an infinite collection of feature structures. A description is said to be satisfiable
if it is satisfied by at least one structure. A description � entails a description  if
every structure satisfying � also satisfies  . Two descriptions are logically equiv-
alent if they entail each other, or equivalently, if they are satisfied by exactly the
same set of structures.

ALE is only sensitive to the differences between logically equivalent formulas
in terms of speed. For instance, the two descriptions (tl:list,ne list,hd:bot)

and hd:bot are satisfied by exactly the same set of totally well-typed structures
assuming the type declaration for lists given above, but the smaller description
will be processed much more efficiently. There are also efficiency effects stem-
ming from the order in which conjuncts (and disjuncts) are presented. The
general rule for speedy processing is to eliminate descriptions from a conjunc-
tion if they are entailed by other conjuncts, and to put conjuncts with more
type and feature entailments first. Thus with our specification for relations
above, the description (arg1:a, binary proposition) would be slower than
(binary proposition,arg1:a), since binary proposition entails the existence
of the feature arg1, but not conversely.9

At run-time, ALE computes a representation of the most general feature struc-
ture that satisfies a description. Thus a description such as hd:a with respect to
the list grammar is satisfied by the structure:

ne_list

HD a

TL list

Every other structure satisfying the description hd:a is subsumed by the structure
given above. In fact, the above structure is said to be a vague representation of all
of the structures that satisfy the description. The type conditions in ALE were
devised to obey the very important property, first noted by Kasper and Rounds
(1986), that every non-disjunctive description is satisfied by a unique most gen-
eral feature structure. Thus in the case of hd:a, there is no more general feature
structure than the one above which also satisfies hd:a.

The previous example also illustrates the kind of type inference used by ALE.
Even though the description hd:a does not explicitly mention either the feature
TL or the type ne list, to find a feature structure satisfying the description, ALE

must infer this information. In particular, because ne list is the most general
type for which HD is appropriate, we know that the result must be of type ne list.

9This is because the depth of dereferencing depends on the history of types a given structure is
instantiated to. There is no path compression on-line, but it is carried out before an edge is asserted
into the chart.
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Furthermore, because ne list is appropriate for both the features HD and TL, ALE

must add an appropriate TL value. The value type list is also inferred, due to the
fact that a ne list must have a TL value which is a list. As far as type inference
goes, the user does not need to provide anything other than the type specifica-
tion; the system computes type inference based on the appropriateness specifi-
cation. In general, type inference is very efficient in terms of time. The biggest
concern should be how large the structures become.10 In contrast to a vague de-
scription, a disjunctive description is usually ambiguous. Disjunction is where
the complexity arises in satisfying descriptions, as it corresponds operationally
to non-determinism.11 For instance, the description hd:(a;b) is satisfied by two
distinct minimal structures, neither of which subsumes the other:

ne_list ne_list

HD a HD b

TL list TL list

On the other hand, the description hd:atom is satisfied by the structure:

ne_list

HD atom

TL list

Even though the descriptions hd:atom and hd:(a;b) are not logically equivalent
(though the former entails the latter), they have the interesting property of be-
ing unifiable with exactly the same set of structures. In other words, if a feature
structure can be unified with the most general satisfier of hd:atom, then it can be
unified with one of the minimal satisfiers of hd:(a;b).

In terms of efficiency, it is very important to use vagueness wherever possible
rather than ambiguity. In fact, it is almost always a good idea to arrange the type
specification with just this goal in mind. For instance, consider the difference
between the following pair of type specifications, which might be used for English
gender:

gender sub [masc,fem,neut]. gender sub [animate,neut].

masc sub []. animate sub [masc,fem].

fem sub []. masc sub [].

neut sub []. fem sub [].

neut sub [].

Now consider the fact that the relative pronouns who and which are distinguished
on the basis of whether they select animate or inanimate genders. In the flatter hi-
erarchy, the only way to select the animate genders is by the ambiguous descrip-
tion masc;fem. The hierarchy with an explicit animate type can capture the same

10Finding most general satisfiers for non-disjunctive descriptions, even those involving type in-
ference, is quasi-linear in the size of the description. But it should be kept in mind that there is
also a factor of complexity determined by the size of the type specification. In practice, this factor
is proportional to how large the inferred structure is. In general, the size of the inferred structure is
linear in the size of the description, with a constant for the type specification.

11It corresponds so closely with non-determinism that satisfiability of descriptions with disjunc-
tions is NP-complete. Furthermore, the algorithm employed by ALE may produce up to 2n satisfiers
for a description with n disjunctions.
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possibilities with the vague description animate. An effective rule of thumb is that
ALE does an amount of work at best proportional to the number of most general
satisfiers of a description and at worst proportional to 2n, where n is the number
of disjuncts in the description. Thus the ambiguous description requires roughly
twice the time and memory to process than the vague description. Whether the
amount of work is closer to the number of satisfiers or exponential in the number
of disjuncts depends on how many unsatisfiable disjunctive possibilities drop out
early in the computation.

4.9.1 Enforcement of Inequations

Inequations are persistent in that once that are created, they remain as long as
one of the structures being inequated remains. Thus the following two descrip-
tions are logically equivalent:

f:(=\=c), f:c

f:c, f:(=\=c)

Both will cause failure; but they are not operationally equivalent. An inequation is
evaluated when it arises, and again after high-level unifications in the system; but
inequations are not evaluated every time an inequated structure is modified. In
an ideal system, inequations would be attached directly to structures so that they
could be evaluated on-line during unification. As things stand, ALE represents a
feature structure as a regular feature structure with a separate set of inequations.
Also, the complexity is sensitive to the conjunctive normal form of inequations at
the time at which it is evaluated, though this form may later be reduced.

These sets of inequations are evaluated at run-time at the point they are en-
countered, before answers are given to top-level queries, before any edge is added
to ALE’s parsing chart, after every daughter is matched to a description in an ALE

grammar rule12, and after the head of an ALE definite clause has been matched
to a goal. At compile-time, inequations are checked for every empty category, for
every lexical entry, and after every lexical rule application.

Inequations are also symmetric. Thus the following two descriptions are logi-
cally equivalent:

f:(=\= X),g:X

f:X,g:(=\= X)

Both inequate the values of F and G. Again, these are not operationally equivalent.
Because inequations are evaluated at the time they are encountered, the second
ordering will normally detect an immediate failure sooner than the first.

An inequation between two feature structures is a requirement for them not
to be token-identical. Thus, if a type is intensional, it is possible for two feature
structures to be of that same type, and still satisfy an inequation between them.
Thus, any attempt to inequate two structures that should be identical as a result
of extensional typing will also cause failure. For instance, consider the following:

12In the case of cats>, they are enforced after the list description itself is matched, and also after
every element of the list is matched.
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s s

F [1] t F [3]

H [1] + G [4] = failure

G [2] t [3] =\= [4]

H [1]

The values of the features F and G cannot be inequated because they are exten-
sionally identical (assuming the type t is declared to be extensional and is only
appropriate for the feature H.

When inequations are evaluated, they are reduced. This reduction consists, in
part, of partial evaluation of extensionality checking, which is otherwise delayed
in ALE. For instance, consider the following:

F [1] s

H bot

J bot

G [2] s

H bot

J bot

[1] =\= [2]

If the type s is extensional and appropriate for the features H and J, then the in-
equation above is reduced to the following:

F [1] s

H [3] bot

J [4] bot

G [2] s

H [5]

J [6]

[3] =\= [5] ; [4] =\= [6]

The set of inequations is stored in conjunctive normal form. The cost is some
space over the re-evaluation of inequations. Of course, if the types on [3] and
[4] were more refined than bot, then the inequations [3] =\= [5] and [4] =\=

[6] would further reduce. In addition, when reducing inequations in this way, we
eliminate those that are trivially satisfied. The ones that are printed are only the
residue after reduction. For instance, consider the following structure:

F [1] s

H [3] a

J bot

G [2] s

H [3]

J bot

[1] =\= [2]

Since the H values are token-identical, this structure reduces to the following.

F s

H [3] a
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J [4] bot

G s

H [3]

J [5] bot

[4] =\= [5]

If structures [4] and [5] had been of non-unifiable types, then there would be no
residual inequation at all — the original inequation would trivially be satisfied.

An important subcase is that of an inequation between extensional atoms. If
an atom is extensional, then there is only one instance of it. Thus an inequation
between two identical, extensional atoms always fails. For example, if a type sig-
nature includes:

bot sub [..., a, b, ...].

a sub [].

intro [f:bot].

b sub [].

...

ext([..., b, ...]).

then the description:

(a,f:=\= b)

is satisfied just in those cases where the value of F is not of type b. If b were inten-
sional, then the inequation in this description would essentially have no effect.
In fact, the only productive instances of inequations between two intensionally
typed feature structures are those used with multiply occurring variables. In all
other instances, there is no way for the inequation to be violated, since there is
no way to render a structurally-identical copy of an intensionally typed feature
structure token-identical to any other structure. ALE detects these trivially satis-
fied inequations and disposes of them.

4.10 Macros

ALE allows the user to employ a general form of parametric macros in descrip-
tions. Macros allow the user to define a description once and then use a short-
hand for it in other descriptions. We first consider a simple example of a macro
definition, drawn from the categorial grammar in the appendix. Suppose the user
wants to employ a description qstore:e list frequently within a program. The
following macro definition can be used in the program file:

quantifier_free macro

qstore:e_list.

Then, rather than including the description qstore:e list in another descrip-
tion, @ quantifier free can be used instead. Whenever @ quantifier free is
used, qstore:e list is substituted.

In the above case, the <macro spec> was a simple atom, but in general, it can
be supplied with arguments. The full BNF for macro definitions is as follows:
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<macro_def> ::= <macro_head> macro <desc>.

<macro_head> ::= <macro_name>

| <macro_name>(<seq(<var>)>)

<macro_spec> ::= <macro_name>

| <macro_name>(<seq(<desc>)>)

<seq(X)> ::= X

| X, <seq(X)>

Note that <seq(X)> is a parametric category in the BNF which abbreviates non-
empty sequences of objects of category X. The following clause should be added
to recursive definition of descriptions:

<desc> ::= @ <macro\_spec>

A feature structure satisfies a description of the form @ <macrospec> just in case
the structure satisfies the body of the definition of the macro.

Again considering the categorial grammar in the appendix, we have the fol-
lowing macros with one and two arguments respectively:

np(Ind) macro

syn:np,

sem:Ind.

n(Restr,Ind) macro

syn:n,

sem:(body:Restr,

ind:Ind).

In general, the arguments in the definition of a macro must be Prolog vari-
ables, which can then be used as variables in the body of the macro. With the
first macro, the description @ np(j) would then be equivalent to the description
syn:np,sem:j. When evaluating a macro, the argument supplied, in this case j, is
substituted for the variable when expanding the macro. In general, the argument
to a macro can itself be an arbitrary description (possibly containing macros). For
instance, the description:

n((and,conj1:R1,conj2:R2),Ind3)

would be equivalent to the description:

syn:n,

sem:(body:(and,conj1:R1,conj2:R2),

ind:Ind3)

This example illustrates how other variables and even complex descriptions can
be substituted for the arguments of macros. Also note the parentheses around
the arguments to the first argument of the macro. Without the parentheses, as in
n(and,conj1:R1,conj2:R2,Ind3), the macro expansion routine would take this
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to be a four argument macro, rather than a two argument macro with a complex
first argument. This brings up a related point, which is that different macros can
have the same name as long as they have the different numbers of arguments.

Macros can also contain other macros, as illustrated by the macro for proper
names in the categorial grammar:

pn(Name) macro

synsem: @ np(Name),

@ quantifier_free.

In this case, the macros are expanded recursively, so that the description pn(j)

would be equivalent to the description

synsem:(syn:np,sem:j),qstore:e_list

It is usually a good idea to use macros whenever the same description is going
to be re-used frequently. Not only does this make the grammars and programs
more readable, it reduces the number of simple typing errors that lead to incon-
sistencies.

As is to be expected, macros can’t be recursive. That is, a macro, when ex-
panded, is not allowed to invoke itself, as in the ill-formed example:

infinite_list(Elt) macro

hd:Elt,

tl:infinite_list(Elt)

The reason is simple; it is not possible to expand this macro to a finite description.
Thus all recursion must occur in grammars or programs; it can’t occur in either
the appropriateness conditions or in macros.

The user should note that variables in the scope of a macro are not the same
as ALE feature structure variables — they denote where macro-substitutions of
parameters are made, not instances of re-entrancy in a feature structure. If we
employ the following macro:

blah(X) macro

b,

f: X,

g: X.

with the argument (c,h:a) for example we obtain the following feature structure:

b

F c

H a

G c

H a

where the values of F and G are not shared (unless c and a are extensional). We
can, of course, create a shared structure using blah, by including an ALE variable
in the actual argument to the macro. Thus blah((Y,c,h:a)) yields:
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b

F [0] c

H a

G [0]

Because programming with lists is so common, ALE has a special macro for it,
based on the Prolog list notation. A description may also take any of the forms on
the left, which will be treated equivalently to the descriptions on the right in the
following diagram:

[] e_list

[H|T] (hd:H,

tl:T)

[A1,A2,...,AN] (hd:A1,

tl:(hd:A2,

tl: ...

tl:(hd:AN,

tl:e_list)...))

[A1,...,AN|T] (hd:A1,

tl:(hd:A2,

tl: ...

tl:(hd:AN,

tl:T)...))

Note that this built-in macro does not require the macro operator @. Thus, for
example, the description [a|T3] is equivalent to hd:a,tl:T3, and the description
[a,b,c] is equivalent to hd:a,tl:(hd:b,tl:(hd:c,tl:e list)). There are many
example of this use of Prolog’s list notation in the grammars in the appendix.
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T4.2 TRALE Descriptions

The following discusses some additions to the ALE description language which
are included in TRALE .

T4.2.1 Logical variable macros

TRALE’s logical variable macros, unlike ALE macros, use logical variables in their
definitions rather than true macro variables. Logical variables entail structure-
sharing if used more than once in a predicate. For example, the Prolog expres-
sion foo(X,X) means that the two arguments of foo are structure-shared.13 True
macro variables, on the other hand, simply serve as place holders and their mul-
tiple occurrence does not entail structure sharing. This makes a difference when
a formal parameter to a macro occurs more than once in a macro definition, e.g.:

foo(X,Y) macro f:X, g:X, h:Y.

In this ALE macro (which uses true macro variables), F’s and G’s values will not be
shared in the result. That is, foo(a,b) for types, a and b, will expand to

(f:a, g:a, h:b)

in which F and G are not structure-shared unless a is extensional.14 One way to
make the two features’ values structure-shared is to substitute a (logical) variable
as an actual parameter for X, i.e. foo(A,b). Note that the first argument of the
macro foo here is a variable rather than an atom. This variable is a “logical” vari-
able because it is used as a first-class citizen of ALE’s description logic, rather than
at the macro level. In this case the macro expands to the following:

(f:A, g:A, h:b)

TRALE’s logical variable macros, on the other hand, automatically interpret
macro parameters such as X and Y as logical variables, and thus implicitly enforce
structure-sharing with multiple occurrences. For example:

foo(X,Y) := f:X, g:X, h:Y.

will automatically structure-share the values of F and G. The infix operator :=/2
indicates a logical variable macro.

Guard declarations for macros can optionally be applied to these parameters
by appending the guard with a hyphen:

foo(X-a, Y-b) := f:X, g:X, h:Y.

This declaration says that X must be consistent with type a, and Y must be
consistent with type b for this macro clause to apply. If it does, F’s and G’s values
are shared. Thus foo(a,b) expands to the following:

13Recall that Prolog variables start with an upper-case letter.
14An extensional type cannot be copied and has to be structure-shared if it occurs more than

once in a feature structure. Extensional and intensional types are discussed in ALE User’s Guide.
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(f:(X,a), g:(X,a), h:(Y,b))

Note that ALE macros can still be declared (with macro/2). As in ALE , @ is used to
call a macro in a description. Let us assume that this signature is defined:

type_hierarchy

bot

person gender:gen nationality:nat name:name

gen

male

female

nat

american

canadian

name

john

mary

.

The following macros can then be defined in the theory file:

man(X-name,Y-nat) :=

(person, name:X, gender:male, nationality:Y).

woman(X-name,Y-nat) :=

(person, name:X, gender:female, nationality:Y).

The above macros can now be called in feature descriptions using @ as in these
lexical entries:

john ---> @ man(john,american).

mary ---> @ woman(mary,canadian).

The integrity of lexical entries can be checked by lex/1. Given the above infor-
mation for example, lex john results in the following output in TRALE :

| ?- lex john.

WORD: john

ENTRY:

person

GENDER male

NAME john

NATIONALITY american

ANOTHER? n.

yes
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In addition, one may check the integrity of macro definitions by macro/1. In this
case, macro woman(X,Y) produces the following output:

| ?- macro woman(X,Y).

MACRO:

woman([0] name,

[1] nat)

ABBREVIATES:

person

GENDER female

NAME [0]

NATIONALITY [1]

ANOTHER? n.

yes

T4.2.2 Macro hierarchies

W. Detmar Meurers, Ohio State University 15

Macros can be hierarchically organized by calling one macro in the definition
of another. The macro X occuring in the definition of a macro Y then can be re-
ferred to as a supermacro of X. And conversely, Y is a submacro of macro X.

The notions of sub- and supermacro thus in one sense are parallel to the no-
tion of sub- and supertype. But it is important to keep in mind that ontologically
macros and types are very different; in particular an object of a type will also be
of one of its subtypes, and of exactly one of its most specific subtypes. There is
no equivalent to this with macro hierarchies, which are just subsumption hierar-
chies of some descriptions that were given names. Different from types, macros
have no theoretical status; they just serve to write down a theory more compactly.

In terms of the macro hiearchy comands below, note that (parallel to types)
the sub- and supermacro relations only include macros on the same level, not
those embedded under features.

This file provides the following top-level predicates, where
<(sub/super)macro> is the macro name (incl. its argument slots). Many of
the predicates exist in two version, one that returns single results and can be
backtracked into, and the other (same predicate name, but ending in s) which
returns the list of all results. Note that the list returned by the second kind of
predicates is sorted though. Also, it is worth noting that the predicates returning
a list will always succeed (they return a [] in the case where setof would fail).

� submacro(<macro>,<submacro>).

� submacros(<macro>,<list(submacros)).

� supermacro(<macro>,<supermacro>).

15Sections T4.2.2–T4.2.4 c2003, W. Detmar Meurers
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� supermacros(<macro>,<list(supermacros)>).

� show_submacros(<macro>).

� show_all_submacros(<macro>).

� show_supermacros(<macro>).

� show_all_supermacros(<macro>).

� show_all_macros. shows the entire macro hierarchy

� macro(<macro>) shows the most general satisfier of the description abbre-
viated by the macro (predicate provided by core ale.pl)

� is_macro(<macro>) returns every macro that’s defined (if tracked back into)

� macros(<list(macro)>) returns list of macros that are defined

� most_specific_macro(<macro>)

� most_specific_macros(<list(macro)>)

� most_general_macro(<macro>)

� most_general_macros(<list(macro)>)

� isolated_macro(<macro>)

� isolated_macros(<list(macro)>) Isolated macros are those that are most
general and most specific at the same time, i.e. they neither occur in other
macro definitions nor are they defined in terms of other macros.

T4.2.3 Automatic generation of macros on different types

Since HPSG theories usually formulate constraints about different kind of objects,
the grammar writer usually has to write a large number of macros to access the
same attribute, or to make the same specification, namely one for each type of
object which this macro is to apply to. For example, when formulating immedi-
ate dominance schemata, one wants to access the VFORM specification of a sign.
When specifying the valence information one wants to access the VFORM speci-
fication of a synsem object. And when specifying something about non-local de-
pendencies, one may want to refer to VFORM specifications of local objects.

TRALE therefore provides a mechanism which derives definitions of macros
describing one type of object on the basis of macros describing another type of
object – as long as the linguist tells the system which path of attributes leads from
the first type of object to the second.

The path from one type of object to another is specified by including a decla-
rations of the following form in the grammar:

access rule(type1,path,type2).
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Such a statement is interpreted as: From type1 objects you get to type2 objects
by following path path.

Since only certain macros are supposed to undergo this extension, they are
specified using slightly different operators than standard TRALE macros: access
macros are specified using the ’:==’ instead of the ’:=’ operator of ordinary macros.
The type of the macro is determined on the basis of the access suffix. The typing of
each of the arguments (if any) is added using the - operator after each argument.

To distinguish the macro names for different type of objects, a naming con-
vention for macros is needed. All macros on objects of a certain type therefore
have the same suffix, e.g., ” s” for all macros describing signs. The type-suffix
pairing chosen by the linguist is specified by including declarations of the follow-
ing form in the grammar:

access suffix(type,suffix).

Such a statement declares that the names of macros describing objects of type
type end in suffix.

So the extend access mechanism reduces the work of the linguist to providing

� macros describing the ’most basic’ type of object, and

� access suffix and access rule declarations.

Access macros are not compiled directly. Instead the access macros must
be translated to ordinary TRALE macros at some point before compiling a
grammar using a call to extend_access(<FileList>,<OutFileName>)., where
<FileList> is a Prolog list of Filenames containing access macro declarations and
<OutFileName> is a single file containing the ordinary TRALE macros. Note that
this resulting file needs to be explicitly loaded as part of the theory file that one
compiles (as usual, using compile_gram/1) in order for those macros to be com-
piled as part of the grammar.

A small example As an example, say we want to have abbreviations to access the
VFORM of a sign, a synsem, local, cat, and a head object. Then we need to define a
macro accessing the most basic object having a VFORM, namely head:

vform h(X-vform) :== vform:X.

Second, (once per grammar) access suffix and access rule declarations for
the grammar need to be provided. The former define a naming convention for the
generated macros by pairing types with macro name suffixes. The latter define
the rules to be used by the mechanism by specifying the relevant paths from one
type of object to another.

access suffix(head," h").

access suffix(cat," c").

access suffix(loc," l").

access suffix(synsem," s").

access suffix(sign,"what a great suffix").
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access rule(cat,head,head).

access rule(loc,cat,cat).

access rule(synsem,loc,loc).

access rule(sign,synsem,synsem).

This results in the following macros to be generated:

vform h(X) := vform:X.

vform c(X) := head:vform h(X).

vform l(X) := cat:vform c(X).

vform s(X) := loc:vform l(X).

vformwhat a great suffix(X) := synsem:vform y(X).

If we were only interested in a vform macro for certain objects, say those of
type sign and synsem, it would suffice to specify access rules for those types in-
stead of the access rules specified above. The following specifications would do
the job:

access suffix(head," h").

access suffix(synsem," s").

access suffix(sign,"what a great suffix").

access rule(synsem,loc:cat:head,head).

access rule(sign,synsem:loc:cat:head,head).

The result would then be:

vform h(X) := vform:X.

vform s(X) := loc:cat:head:vform h(X).

vformwhat a great suffix(X) := synsem:loc:cat:head:vform h(X).

Warnings

Several kinds of warnings can appear on user output. Access expansion contin-
ues.

1. A TRALE macro already defined always has priority over a derived macro,
regardless of whether

(a) the derived macro is the direct translation of an access macro defined
by the user or

(b) the derived macro is the result of access rule applications.

2. If a TRALE macro has already been derived by translation of an access macro
with or without access rule application, an access macro occurring later in
the grammar which would derive the same macro is not translated an no
further rules are applied to the later access macro. Currently this is also the
case if the two predicates differ in arity.
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Errors

Several types of errors can be detected and a message is printed on user output.
Access expansion then aborts.

1. A type occurring in an access rule is not allowed to have

(a) multiple suffixes defined for it

(b) no suffixes defined for it

2. Two suffixes defined must not

(a) be identical

(b) have a common ending

T4.2.4 Example

Whenever there is an object of type main verb, its AUX and INV feature values must
be set to minus. In the case of auxiliaries, their AUX feature has to be plus but their
INV feature could be either plus or minus.

The following example shows a TRALE logical variable macro. This macro as-
sumes subject verb agreement holds.

vp(Ind):=

synsem:local:(content:index:Ind,

cat:subcat:[synsem:local:content:index:Ind]

).

As mentioned in subsection T4.2.1, TRALE treats variables used in TRALE macro
defini-tions (:=) as logical variables and therefore, assumes structure-sharing be-
tween multiple occurrences of such variables. Using a TRALE logical variable
macro, we ensure that the values of the INDEX feature of the verb phrase and of
the subject are structure-shared. Therefore,

vp((person:third, number:singular))

is equivalent to:

synsem:local:(content:index:(Ind,

person:third,

number:singular),

cat:subcat:[synsem:local:content:index:Ind])

In the above feature structure, the values of both INDEX features are structure-
shared. Had we used a regular ALE macro (using macro/1), we would have
reached a similar result but the values of the INDEX features would simply have
been structure-identical.

We can also use the type guard declaration of TRALE macros to make sure that
Ind is consistent with the type ind. This can be achieved by adding the guard to
the head of the macro definition as follows:
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vp(Ind-ind):=

synsem:local:(content:index:Ind,

cat:subcat:[synsem:local:content:index:Ind]).
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4.11 Functional Descriptions

ALE also provides the means to define functions mapping descriptions to descrip-
tions. The syntax is:

<func_def> ::= <func_spec> +++> <desc>.

<func_spec> ::= <func_name>

| <func_name>(<seq(desc)>)

Functional descriptions are compiled into code that is evaluated at run-time, first
adding to each argument (if any) the description given for that argument, and
then evaluating to the resulting description, which can itself include other func-
tional descriptions, including recursive calls. As an example, one may consider
the append/2 function:

append([],L) +++> L.

append([X|L1],L2) +++> [X|append(L1,L2)].

The lists shown here are instances of ALE’s list macro notation. Notice that the
only type checking in this definition is performed by appropriateness and the list
macro, so the first clause could succeed with any L. To add more, one could rede-
fine the first clause as:

append([],(list,L)) +++> L.

Functional descriptions can be used wherever other descriptions can. The user
should be particularly careful with ensuring that the arguments to a functional
description call will be sufficiently instantiated for the call to terminate; and the
clauses, correctly ordered for the description to terminate correctly. Type check-
ing cannot ensure this, in general. For example, in the definition for append/2,
with or without explicit type-checking on the second argument, both clauses will
match a functional description whose first argument or any TL value in the first
argument is strictly of type list, i.e., a list that is not known to be elist or nelist.
Such a functional description will, thus, evaluate to an infinite number of results.
Clauses in functional descriptions are considered in the order they are given; and
the search for solutions always backtracks into subsequent clauses.

Any functional description that can be defined so that its argument descrip-
tions are only variables, and its result has no (mutual) recursion should be defined
as a macro instead, which is completely expanded at compile-time. Remember,
however, that it is not always sufficient to replace the +++> with macro: variable
replacement in macros works by true textual replacement, whereas the variables
in functional descriptions are ALE descriptions. For example, the functional de-
scription:

foo(X) +++> (bar,f:X,g:X).

evaluates to a feature structure with a re-entrancy. The macro:

foo(X) macro (bar,f:X,g:X).
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does not necessarily evaluate to a feature structure with a re-entrancy. The func-
tional description, foo/1 is correctly converted to the macro:

foo(X) macro (bar,f:(Y,X),g:(Y,X)).

The ALE variable, Y, establishes the re-entrancy that the macro variable, X, does
not.

4.12 Type Constraints

Our logical language of descriptions can be used with the type system in order
to enforce constraints on feature structures of a particular type. Constraints are
attached to types, and may consist of arbitrary descriptions. Their effect is to
require every structure of the constrained type to always satisfy the constraint
description.

Constraints are enforced using the cons operator, e.g.:

bot sub [a,b].

a sub []

intro [f:b,g:b].

b sub [].

a cons (f:X,g:=\= X).

The constraint on the type a (which must occur within parentheses) requires all
feature structures of type a to have non-token-identical values for features f and
g. Notice that the type b has no constraints expressed. This is equivalent to spec-
ifying the constraint:

b cons bot.

which is satisfied by any feature structure (of type b). A type constraint may use
any of the operators in the description language, including further type descrip-
tions, which may themselves be constrained. The type, bot, may not have type
constraints, nor may a /1 atoms.

It is crucial that the type descriptions be finitely resolvable. Because simple
depth-first search is used to evaluate constraints, infinite resolution paths will
cause the system to hang. For example, the following signature should not con-
tain the following constraints:

bot sub [a,b].

a sub [c]

intro [f:bot].

c sub [].

b sub []

intro [g:bot].

a cons f:b.

b cons g:c.

This is because a subsumes c. Notice, however, that type constraints can be used
to provide additional information regarding value restrictions on appropriate fea-
tures. In general, ALE performs more efficiently when restrictions are provided
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Puzzle: Three different houses each contain a different pet, a different drink, and
an inhabitant of a different nationality. The following six facts are true about these
houses:

1. The man in the third (middle) house drinks milk.

2. The Spaniard owns the dog.

3. The Ukranian drinks the tea.

4. The Norwegian lives in the first house.

5. The Norwegian lives next to the tea-drinker.

6. The juice-drinker owns the fox.

Questions: Who owns the zebra? Who drinks juice?

Figure 4.2: The Zebra Puzzle.

in the appropriateness conditions, rather than in general constraints; but type
constraints can encode a greater variety of restrictions. Specifically, they allow
constraints to express path equations and inequations, as well as deeper path re-
strictions. Constraints may include relational constraints, which are defined us-
ing definite clauses, which are discussed below. Type constraints are efficiently
compiled in the same way as other descriptions. Also, like appropriateness con-
ditions, they are only enforced once for any given structure.

It is also important to note that because of the delay in ALE’s inequational en-
forcement, type constraints that involve recursion that terminates by an inequa-
tion failure may go into infinite loops due to this delay in enforcement. Because
extensionality is only enforced before the answer to a top-level query is given, re-
cursive type constraints that rely on the extensional identity of two feature struc-
tures to terminate on the basis of their type will not terminate.

4.13 Example: The Zebra Puzzle

We now provide a simplified form of the Zebra Puzzle (Figure 4.2), a common
puzzle for constraint resolution. This puzzle was solved by Aı̈t-Kaci (1984) using
roughly the same methods as we use here. The puzzle illustrates the expressive
power of the combination of extensional types, inequations and type constraints.
Such puzzles, sometimes known as logic puzles or constraint puzzles, require one
to find a state of affairs within some situation that simultaneously satisfies a set
of constraints. The situation itself very often implicitly levies certain constraints.

We can represent the simplified Zebra Puzzle in ALE as:

% Subsumption

%=======================

bot sub [house,descriptor,background].
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descriptor sub [nat_type,ani_type,bev_type].

nat_type sub [norwegian,ukranian,spaniard].

norwegian sub [].

ukranian sub [].

spaniard sub [].

ani_type sub [fox,dog,zebra].

fox sub [].

dog sub [].

zebra sub [].

bev_type sub [juice,tea,milk].

juice sub [].

tea sub [].

milk sub [].

house sub []

intro [nationality:nat_type,animal:ani_type,beverage:bev_type].

background sub [clue]

intro [house1:house,house2:house,house3:house].

clue sub [maximality].

maximality sub [].

ext([norwegian,ukranian,spaniard,fox,dog,zebra,juice,tea,milk]).

% Constraints

%=============================

background cons

(house1:nationality:N1, % inequational constraints

house2:nationality:(N2,(=\= N1)),

house3:nationality:((=\= N1),(=\= N2)),

house1:animal:A1,

house2:animal:(A2,(=\= A1)),

house3:animal:((=\= A1),(=\= A2)),

house1:beverage:B1,

house2:beverage:(B2,(=\= B1)),

house3:beverage:((=\= B1),(=\= B2))).

clue cons

(house3:beverage:milk, % clue 1

(house1:nationality:spaniard,house1:animal:dog % clue 2

;house2:nationality:spaniard,house2:animal:dog

;house3:nationality:spaniard,house3:animal:dog),

(house1:nationality:ukranian,house1:beverage:tea % clue 3

;house2:nationality:ukranian,house2:beverage:tea
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;house3:nationality:ukranian,house3:beverage:tea),

house1:nationality:norwegian, % clue 4

(house1:nationality:norwegian,house2:beverage:tea % clue 5

;house2:nationality:norwegian,house3:beverage:tea

;house2:nationality:norwegian,house1:beverage:tea

;house3:nationality:norwegian,house2:beverage:tea),

(house1:beverage:juice,house1:animal:fox % clue 6

;house2:beverage:juice,house2:animal:fox

;house3:beverage:juice,house3:animal:fox)).

maximality cons

(house1:nationality:(norwegian;ukranian;spaniard), % maximality constraints

house2:nationality:(norwegian;ukranian;spaniard),

house3:nationality:(norwegian;ukranian;spaniard),

house1:animal:(fox;dog;zebra),

house2:animal:(fox;dog;zebra),

house3:animal:(fox;dog;zebra),

house1:beverage:(juice;tea;milk),

house2:beverage:(juice;tea;milk),

house3:beverage:(juice;tea;milk)).

The subsumption hierarchy is shown pictorially in Figure 4.3. The type,
background, with the assistance of the types subsumed by house and descriptor,
represents the situation of three houses (the features of background), each of
which has three attributes (the features of house). The implicit constraints levied
by the situation appear as constraints on the type, background, namely that no
two houses can have the same value for any attribute. These are represented by
inequations. But notice that, since we are interested in treating the values of at-
tributes as tokens, we must represent those values by extensional types. If we had
not done this, then we could still, for example, have two different houses with
the beverage, juice, since there could be two different feature structures of type
juice that were not token-identical. Notice also that all of these types are maxi-
mal, and hence satisfy the restriction that ALE places on extensional types.

The explicit constraints provided by the clues to the puzzle are represented as
constraints on the type clue, a subtype of background. We also need a subtype of
clue, maximality, to enforce another constraint implicit to all constraint puzzles,
namely the one which requires that we provide only maximally specific answers,
rather than vague solutions which say, for example, that the beverage for the third
house is a type of beverage (bev type), which may actually still satisfy a puzzle’s
constraints.

To solve the puzzle, we simply type:

| ?- mgsat maximality.
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Figure 4.3: Inheritance Network for the Zebra Puzzle.

MOST GENERAL SATISFIER OF: maximality

maximality

HOUSE1 house

ANIMAL fox

BEVERAGE juice

NATIONALITY norwegian

HOUSE2 house

ANIMAL zebra

BEVERAGE tea

NATIONALITY ukranian

HOUSE3 house

ANIMAL dog

BEVERAGE milk

NATIONALITY spaniard

ANOTHER? y.

no

| ?-

So the Ukranian owns the zebra, and the Norwegian drinks juice. A most gen-
eral satisfier of maximality will also satisfy the constraints of its supertypes,
background and clue.

Although ALE is capable of representing such puzzles and solving them, it is
not actually very good at solving them efficiently. To solve such puzzles efficiently,
a system must determine an optimal order in which to satisfy all of the various
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constraints. ALE does not do this since it can express definite clauses in its con-
straints, and the reordering would also be very difficult for the user to keep track
of while designing a grammar. A system that does do this is the general constraint
resolver proposed by Penn and Carpenter (1993)16.

16This system was actually the precursor to ALE. It implemented a completely reversible
constraint-based parser/generator with a weighting on the constraints based on their maximal
non-determinism. Re-ordering constraints, however, proved to be insufficient for efficient pars-
ing or generation, compared to a uni-directional system such as ALE.
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T4.3 Complex-antecedent constraints

TRALE theories can use all of the declarations available to ALE . These include re-
lations, lexical entries, lexical rules, extended phrase structure rules, and Prolog-
like definite clauses over typed feature structures. They also include one extra,
complex-antecedent constraints, which is discussed in the following section.

ALE’s constraints are more restricted in the sense that the antecedent (left-
hand side) of a constraint can only be a type. ALE constraints have the following
forms:

t cons Desc.

or

t cons Desc goal Goal.

where the antecedent, t, is a type and the consequent (right-hand side), Desc, is
the description of the constraint. These constraints apply their consequents to
all feature structures of type t, which is to say that they are universally quanti-
fied over all feature structures and are triggered based on subsumption, i.e., Desc
and Goal are not necessarily applied to feature structures consistent with t, but
rather to those that are subsumed by the most general satisfier of t, as given by a
constraint-free signature. For example, the constraint:

a cons (f:X,g:=\=X)

states that the values of the F and G features of any object of type a or a type
subsumed by a must not be structure-shared. If a goal is specified in a constraint,
the constraint is satisfied only if the goal succeeds.

TRALE generalizes this to allow for antecedents with arbitrary function-free,
inequation-free antecedents. TRALE constraints are defined using the infix oper-
ator, *>/2, e.g.:

(f:minus, g:plus) *> X goal foo(X).

This constraint executes foo/1 on feature structures with F value minus and
G value plus. These are also universally quantified, and they are also triggered
based on subsumption by the antecedent, not unification. For example, in the
above constraint, if a feature structure does not have an F value, minus, and a G

value, plus, yet, but is not inconsistent with having them, then TRALE will sus-
pend consideration of the constraint until such a time as it acquires the values
or becomes inconsistent with having them. These constraints are thus consistent
with a classical view of implication in that the inferences they witness are sound
with respect to classical implication, but they are not complete. On the other
hand, they operate passively in the sense that the situation can arise in which
several constraints may each be waiting for the other for their consequents to
apply. This is called deadlock. An alternative to this approach would be to use
unification to decide when to apply consequents, or some built-in search mech-
anism that would avoid deadlock but risk non-termination. Of the two, deadlock
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is preferable. Additional (constraint) logic programs can be written to search the
space of possible solutions in a way suited to the individual case if there are dead-
locked or suspended constraints in a solution.

Variables in *> constraints are implicitly existentially quantified within the an-
tecedent. Thus:

(f:X, g:X) *> Y goal foo(Y).

applies the consequent when F’s and G’s values are structure-shared. In other
words, it applies the consequent if there exists an X such that F’s and G’s values are
both X. In addition, the consequent of the above-mentioned constraint implicitly
applies only to feature structures for which F and G are both appropriate. Path
equations can be used in antecedents to explicitly request structure-sharing as
well. The following constraint is equivalent to the one above:

([f]==[g]) *> Y goal foo(Y).

A singleton variable in the antecedent results in no delaying itself apart from
the implicit appropriateness conditions. Variables occurring in the consequent
are in fact bound with scope that extends over the consequent and relational at-
tachments. Thus, in the following example:

(f:X, g:X) *> W goal foo(X, W).

the first argument passed to foo/2 is the very X that is the value of both F and
G. This use of variables on both sides of the implication is a loose interpretation
consistent with common practice in linguistics. With a classical interpretation of
implication, it is always true that:

p! q i� p! (p ^ q)

Thus:

(9x1; : : : ;9xn: p) ! q i� (9x1; : : : ;9xn: p) ! ((9x1; : : : ;9xn:p) ^ q)

Note that, according to the classical interpretation, q is not in the scope of the
existential quantifiers. TRALE , however, bends this rule taking the latter to be
equivalent to:

(9x1; : : : ;9xn: p) ! 9x1; : : : ;9xn:(p ^ q)

Here, q is in the scope of the 9x1; : : : ;9xn. Consequently, if the genuine equiv-
alence is desired, one must ensure that x1; : : : ; xn do not occur in q, in which case
(9x1; : : : 9xn: p) ^ q and 9x1; : : : 9xn:(p ^ q) are equivalent. Requiring this extra
variable hygiene is the price of permitting this non-equivalent use of implication
and quantification as the default, rather than what is logically valid. An example
of such a relaxed use of such rules in linguistics is provided below:

spec_dtr:(head:noun,

index:Ind)

*> head_dtr:(head:verb,

index:Ind).



T4.3. COMPLEX-ANTECEDENT CONSTRAINTS T38-3

The above constraint is formulated so as to assure subject-verb agreement by en-
forcing structure-sharing between the INDEX feature of the subject and that of the
verb. In the strict interpretation, the second instance of the variable Ind would
have broad scope (existentially quantified over the entire clause), and thus be
possibly different from the Ind in the antecedent. TRALE’s interpretation of this,
however, assumes they are the same. As mentioned above, if the strict interpreta-
tion is desired, a different variable name must be used in the consequent of this
constraint.

In some languages, the form of the verb depends on the type of eventuality
denoted by the sentence. In Czech, for example, it is generally the case that if
an event is total (i.e. completed as opposed to simply terminated), the verb that
denotes that event surfaces in the perfective form. This rule can be enforced as
the following constraint in the grammar. Note that since the constraint applies
to a type rather than a particular description, we could use an ALE constraint
(cons/2), too.

(sentence,event:total) *>

synsem:(local:(cat:(head:(vform:perf)))).

This constraint applies its consequent to all feature structures of type sentence

with the required EVENT value.
Another example of a complex-antecedent constraint can be found in HPSG’s

Binding Theory, which refers to the notions of o-binding and o-commanding.
O-binding is defined as follows (see Pollard and Sag 1994, p. 253–54):

“Y (locally) o-binds Z just in case Y and Z are coindexed and Y (locally)
o-commands Z. If Z is not (locally) o-bound, then it is said to be (lo-
cally) o-free.”

Pollard and Sag define o-commanding as follows:

“Let Y and Z be synsem objects with distinct LOCAL values, Y referen-
tial. Then Y locally o-commands Z just in case Y is less oblique than
Z. . .

“Let Y and Z be synsem objects with distinct LOCAL values, Y referen-
tial. Then Y o-commands Z just in case Y locally o-commands X dom-
inating Z.”

Based on these notions, HPSG’s Binding Theory is phrased as the following three
principles (ibid):

HPSG Binding Theory:
Principle A. A locally o-commanded anaphor must be locally

o-bound.
Principle B. A personal pronoun must be locally o-free.
Principle C. A nonpronoun must be o-free.

A simplified version of Principle A can be written as a constraint over all head-
comple-ment structures (head comp struc) as follows:
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% BINDING THEORY

% PRINCIPLE A

head_comp_struc *> (spec_dtr:(synsem:content:

(X,

index:IndX)),

comp_dtr:(synsem:content:

(Y,ana,

index:IndY)))

goal (local_o_command(X,Y) ->

IndX = IndY; true).

(X = X) if true.

The above ALE constraint makes sure that for all head comp struc type objects, if
the complement daughter is anaphoric and locally o-commanded by the spec-
ifier, then the two daughters must be coindexed. The definition “(X = X) if

true” is provided because ALE does not come with a built-in equality relation
defined over descriptions. We leave the definitions of local o command/2 and
o command/2 to the reader.

An alternative is to formulate the constraint in the following manner:

% BINDING THEORY

% PRINCIPLE A (Alternate formulation):

(spec_dtr:(synsem:content:(X,index:IndX)),

comp_dtr:(synsem:content:(Y,ana,index:IndY)))

*> bot

goal (local_o_command(X,Y) -> IndX = IndY; true).

(X = X) if true.

The above constraint applies to any description subsumed by the antecedent.
If the first daughter’s index locally o-commands the second’s, then they should be
coindexed. Bot results in no additional description be added. Alternatively, one
could use an anonymous variable, “ ”.

Let us now see how Principle B can be written as a TRALE complex-antecedent
constraint:

% Binding Theory

% PRINCIPLE B:

(spec_dtr:(synsem:content:(X,index:Ind)),

comp_dtr:(synsem:content:(Y,ppro,index:Ind)))

*> bot

goal (local_o_command(X,Y) -> fail; true).

This constraint states that for all descriptions with specifier and complement
daughters, if the latter is a personal pronoun and locally o-commanded by the
former, then the two daughters must not be coindexed.

Analogously, Principle C can be encoded as follows:
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% BINDING THEORY

% PRINCIPLE C:

(spec_dtr:(synsem:content:(X,index:Ind)),

comp_dtr:(synsem:content:(Y,npro,index:Ind)))

*> bot

goal (o_command(X,Y) -> fail; true).

This last constraint states that for all descriptions with specifier and comple-
ment daughters, if the second one is a nonpronoun (npro), then it must not be
o-commanded by the first and coindexed with it.
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Definite Clauses

The next two sections, covering the constraint logic programming and phrase
structure components of ALE, simply describe how to write ALE programs and
how they will be executed. Discussion of interacting with the system itself follows
the description of the programming language ALE provides.

The definite logic programming language built into ALE is a constraint logic
programming (CLP) language, where the constraint system is the attribute-value
logic described above. Thus, it is very closely related to both Prolog and LO-
GIN. Like Prolog, definite clauses may be defined with disjunction, negation and
cut. The definite clauses of ALE are executed in a depth-first, left to right search,
according to the order of clauses in the database. ALE performs last call opti-
mization, but does not perform any clause indexing.1 Those familiar with Pro-
log should have no trouble adapting that knowledge to programming with def-
inite clauses in ALE. The only significant difference is that first-order terms are
replaced with descriptions of feature structures.

While it is not within the scope of this user’s guide to detail the logic program-
ming paradigm, much less CLP, this section will explain all that the user familiar
with logic programming needs to know to exploit the special features of ALE. For
background, the user is encouraged to consult Sterling and Shapiro (1986) with
regard to general logic programming techniques, most of which are applicable in
the context of ALE, and Aı̈t-Kaci and Nasr (1986) for more details on programming
with sorted feature structures. For more advanced material on programming in
Prolog with a compiler, see O’Keefe (1990). The general theory of CLP is developed
in a way compatible with ALE in Höhfeld and Smolka (1988). Of course, since ALE

is literally an implementation of the theory found in Carpenter (1992), the user is
strongly encouraged to consult Chapter 14 of that book for full theoretical details.

The syntax of ALE’s logic programming component is broadly similar to that
of Prolog, with the only differences being that first-order terms are generally re-
placed with attribute-value logic descriptions, and a different language of block
conditionals for co-routining (see p. 44). The language in which clauses are ex-
pressed in ALE is given in BNF as:

<clause> ::= <literal> if <goal>.

1Thus, additional cuts might be necessary to ensure determinism, so that last call optimization
is effective.

39
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<literal> ::= <pred_sym>

| <pred_sym>(<seq(desc)>)

<goal> ::= true

| <literal>

| (<goal>,<goal>)

| (<goal>;<goal>)

| (<desc> =@ <desc>)

| (<cut_free_goal> -> <goal>)

| (<cut_free_goal> -> <goal> ; <goal>)

| !

| (\+ <goal>)

| prolog(<prolog_goal>)

| when(<cond>,<goal>)

Just as in Prolog, predicate symbols must be Prolog atoms. This is a more re-
stricted situation than the definite clause language discussed in Carpenter (1992),
where literals were also represented as feature structures and described using
attribute-value logic. Also note that ALE requires every clause to have a body,
which might simply be the goal true. There must be whitespace around the if

operator, but none is required around the conjunction comma, the disjunction
semicolon, the cut or shallow cut symbols !,->, or the unprovability symbol n+.
Parentheses, in general, may be dropped and reconstructed based on operator
precedences. The precedence is such that the comma binds more tightly than
the semicolon, while the unprovability symbol binds the most tightly. Both the
semicolon and comma are right associative.

The operational behavior of ALE is nearly identical to Prolog with respect to
goal resolution. That is, it evaluates a sequence of goals depth-first, from the left
to right, using the order of clauses established in the program. The only difference
arises from the fact that, in Prolog, terms cannot introduce non-determinism. In
ALE, due to the fact that disjunctions can be nested inside of descriptions, addi-
tional choice points might be created both in matching literals against the heads
of clauses and in expanding the literals within the body of a clause. In evaluating
these choices, ALE maintains a depth-first left to right strategy.

We begin with a simple example, the member/2 predicate:2

member(X,hd:X) if

true.

member(X,tl:Xs) if

member(X,Xs).

As in Prolog, ALE clauses may be read logically, as implications, from right to left.
Thus the first clause above states that X is a member of a list if it is the head of a list.
The second clause states that X is a member of a list if X is a member of the tail of
the list, Xs. Note that variables in ALE clauses are used the same way as in Prolog,
due to the notational convention of our description language. Further note that,
unlike Prolog, ALE requires a body for every clause. In particular, note that the first

2As in Prolog, we refer to predicates by their name and arity.
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clause above has the trivial body true. The compiler is clever enough to remove
such goals at compile time, so they do not incur any run-time overhead.

Given the notational convention for lists built into ALE, the above program
could equivalently be written as:

member(X,[X|_]) if

true.

member(X,[_|Xs]) if

member(X,Xs).

But recall that ALE would expand [X| ] as (hd:X,tl: ). Not only does ALE not
support anonymous variable optimizations, it also creates a conjunction of two
descriptions, where hd:X would have sufficed. Thus the first method is not only
more elegant, but also more efficient.

Due to the fact that lists have little hierarchical structure, list manipulation
predicates in ALE look very much like their correlates in Prolog. They will also
execute with similar performance. But when the terms in the arguments of liter-
als have more interesting taxonomic structure, ALE actually provides a gain over
Prolog’s evaluation method, as pointed out by Aı̈t-Kaci and Nasr (1986). Consider
the following fragment drawn from the syllabification grammar in the appendix,
in which there is a significant interaction between the inheritance hierarchy and
the definite clause less sonorous/2:

segment sub [consonant,vowel].

consonant sub [nasal,liquid,glide].

nasal sub [n,m].

n sub [].

m sub [].

liquid sub [l,r].

l sub [].

r sub [].

glide sub [y,w].

y sub [].

w sub [].

vowel sub [a,e,i]

a sub [].

e sub [].

i sub [].

less_sonorous_basic(nasal,liquid) if true.

less_sonorous_basic(liquid,glide) if true.

less_sonorous_basic(glide,vowel) if true.

less_sonorous(L1,L2) if

less_sonorous_basic(L1,L2).

less_sonorous(L1,L2) if

less_sonorous_basic(L1,L3),

less_sonorous(L3,L2).
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For instance, the third clause of less sonorous basic/2, being expressed
as a relation between the types glide and vowel, allows solutions such as
less sonorous basic(w,e), where glide and vowelhave been instantiated as the
particular subtypes w and e. This fact would not be either as straightforward or as
efficient to code in Prolog, where relations between the individual letters would
need to be defined. The loss in efficiency stems from the fact that Prolog must
either code all 14 pairs represented by the above three clauses and type hierarchy,
or perform additional logical inferences to infer that w is a glide, and hence less
sonorous than the vowel e. ALE, on the other hand, performs these operations by
unification, which, for types, is a simple table look-up.3 All in all, the three clauses
for less sonorous basic/2 given above represent relations between 14 pairs of
letters. Of course, the savings is even greater when considering the transitive
closure of less sonorous basic/2, given above as less sonorous/2, and would
be greater still for a type hierarchy involving a greater degree of either depth or
branching.

While we do not provide examples here, suffice it to say that cuts, shallow
cuts, negation, conjunction and disjunction work exactly the same as they do in
Prolog. In particular, cuts conserve stack space representing backtracking points,
disjunctions create choice points and negation is evaluated by failure, with the
same results on binding as in Prolog.

The definite clause language also allows arbitrary prolog goals, using the pred-
icate, prolog(<prolog goal>). This is perhaps most useful when used with the
Prolog predicates, assert and retract, which provide ALE users with access to
the Prolog database, and with I/O statements, which can be quite useful for de-
bugging definite clauses.

Should prolog goal contain a variable that has been instantiated to an ALE

feature structure, this will appear to Prolog as ALE’s internal representation of
that feature structure. Feature structures can be asserted and retracted, however,
without regard to their internal structure. The details of ALE’s internal representa-
tion of feature structures can be found in Carpenter and Penn (1996), and briefly
on p. 85.

Another side effect of not directly attaching inequations to feature structures
is that if a feature structure with inequations is asserted and a copy of it is later
instantiated from the Prolog database or retracted, the copy will have lost the in-
equations. In general, passing feature structures with inequations to Prolog hooks
should be avoided.

Because the enforcement of extensionality is delayed in ALE, a variable which
is instantiated to an extensionally typed feature structure and then passed to a
prolog hook may also not reflect token identities as a result of extensionality. Pro-
vided that there are no inequations (to which the user does not have direct ac-
cess), this can be enforced within the hook by calling the ALE internal predicate
extensionalise(FS,[]).

There is a special literal predicate, =@, used with infix notation, which is true
when its arguments are token-identical. As with inequations, which forbid token-
identity, the =@ operator is of little use unless multiply occurring variables are

3Table look-ups involved in unification in ALE rely on double hashing, once for the type of each
structure being unified.
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used in its arguments’ descriptions. Note, however, that while inequations (=\=)
and path equations (==) are part of the description language, =@ is a definite clause
predicate, and cannot be used as a description. It is more important to note that
while the negation of the structure-identity operator (==), namely the inequa-
tion (=\=), is monotonic when interpreted persistently, the negation of the token-
identity operator (=@), achieved by using it inside the argument of the \+ operator,
is non-monotonic, and thus its use should be avoided.

It is significant to note that clauses in ALE are truly definite in the sense that
only a single literal is allowed as the head of a clause, while the body can be a gen-
eral goal. In particular, disjunctions in descriptions of the arguments to the head
literal of a clause are interpreted as taking wide scope over the entire clause, thus
providing the effect of multiple solutions rather than single disjunctive solutions.
The most simple example of this behavior can be found in the following program:

foo((b;c)) if true.

bar(b) if true.

baz(X) if foo(X), bar(X).

Here the query foo(X) will provide two distinct solutions, one where X is of type
b, and another where it is of type c. Also note that the queries foo(b) and foo(c)

will succeed. Thus the disjunction is equivalent to the two single clauses:

foo(b) if true.

foo(c) if true.

In particular, note that the query baz(X) can be solved, with X instantiated to an
object of type b. In general, using embedded disjunctions will usually be more ef-
ficient than using multiple clauses in ALE, especially if the disjunctions are deeply
nested late in the description. On the other hand, cuts can be inserted for control
with multiple clauses, making them more efficient in some cases.

5.1 Type Constraints Revisited

The type constraints mentioned in the last chapter can also incorporate relational
constraints defined by definite clauses, with the optional operator goal. Consider
the following example from HPSG:

word cons W

goal (single_rel_constraint(W),

clausal_rel_prohibition(W)).

In this example, the constraint from the description language is simply the vari-
able W, which is used to match any feature structure of type word. That fea-
ture structure is then passed as an argument to the two procedural attachments
single rel constraint/1 and clausal rel prohibition/1, which each repre-
sent a principle from HPSG which governs words (among other objects). Notice
that the goal, when non-literal, must occur within parentheses.
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While every type constraint must have a description, procedural attachments
are optional. If they do occur, they occur after the description. The syntax is given
in BNF as:

<cons_spec> ::= <type> cons <desc>

| <type> cons <desc>

goal <goal>

5.2 Co-routining

Co-routining allows programmers to block the execution of a particular thread of
execution until some event is witnessed. In logic programming, variables serve as
the witnesses to these events — naturally extending their role as representatives
of state in the logical setting. Users who are already familiar with SICStus Pro-
log’s when/2 should exercise some caution with ALE’s own when/2 predicate: as
described in further detail below, its conditional expressions generalize SICStus
Prolog’s conditional expressions to the typed case in such a way that a condition
may provably never occur, and its treatment of shared variables in conditional
expressions is also necessarily different (see Section 5.2.1). Unlike SICStus Pro-
log, ALE currently provides no support for residuation or examination of blocked
goals.

when/2 delays execution until some event is witnessed. This is often used to
protect very declaratively written goals from non-termination in certain calling
contexts, or to make highly disjunctive goals more efficient, by waiting until a
condition is observed that reduces the number of satisfying disjuncts. A common
example is:

foo(X) :-

... % NewVar does not occur here

when((X=ne_list;X=e_list),append(X,List,NewVar)).

append([],L,L) if true.

append([H|T],L,[H|Res]) if

append(T,L,Res).

The call to when/2 in foo/1 waits until X is either a non-empty list or an empty
list before calling append/3. Not to do so with the definition of append/3 given
above, that is, calling append/3 when X is only of type list or bot, would result in
an infinite number of possible answers, because NewVar is a new variable. A more
compact way of writing the same thing is:

foo(X) :-

... % NewVar does not occur here

when((X=max(list),append(X,List,NewVar)).

This waits until X has one of the maximally specific types that list subsumes. In
general, this method is to be preferred because ALE can implement it more effi-
ciently, but there are some disjunctive conditionals that cannot be re-expressed
in this fashion without declaring extra types in the signature.
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The first argument to when/2 is called a conditional expression or block con-
dition; it expresses the event that ALE must wait for before executing the goal in
the second argument to when/2. Fundamentally, conditional expressions take the
form of equations in which the left-hand side is an ALE variable (denoting a typed
feature structure), and the right-hand side is a function-free, inequation-free de-
scription. Macros can be used, as long as the macros do not expand to a descrip-
tion that contains a function or an inequation. Conditional expressions are closed
under conjunction and disjunction, both at the description-level inside the right-
hand side of a conditional equation, and outside at the level of the conditional
equations themselves. The example above uses an “outside” disjunction, which
could have been expressed “inside” as:

foo(X) :-

... % NewVar does not occur here

when(X=(ne_list;e_list),append(X,List,NewVar)).

Neither is more efficient than the other, but “outside” disjunctions must be used
when the left-hand side variables differ.

When ALE encounters a goal blocked by a conditional equation, it waits until
the equation is known to be necessarily true or false. This typically happens as a
result of the program or grammar acquiring more information about a variable,
such as the structure-sharing of two of its features’ values, or a more specific or
join-compatible type. If the conditional equation becomes provably false, i.e., if
it becomes known that it will never be true, then the blocked goal is discarded
and never executed. If it becomes true, then the blocked goal is executed. If in-
dependently blocked goals have the same conditional, or have conditionals that
become provably true at the same time, then it is unpredictable in which order
they will be executed. If any blocked goal fails, then execution fails back to the
point where the goal was blocked, not executed. For the most part, this is in keep-
ing with the operational behaviour of when/2 in SICStus Prolog.

Unlike SICStus Prolog conditionals such as nonvar/1 or ?=/2, however, an ALE

conditional expression may become provably false. A conditional equation on a
type, for example, such as X=e list, can never become true once Xpromotes to an
incompatible type, such as ne list. Blocked goals in ALE should be written with
this fact in mind. In particular, Prolog goals blocked on ?=/2 in SICstus Prolog
must check for equality or inequality because ?=/2 could become true by virtue
of either, whereas ALE goals blocked on structure-sharing are executed only as a
result of equality. ALE goals cannot be blocked on inequality.

The BNF syntax for conditionals is given in the appendix.

5.2.1 Shared variables in conditionals

Particular care must also be taken with shared variables in ALE conditional ex-
pressions because there are two scopes within which they can be quantified. The
goal:

when(X=([f]==[g]),bar(X))

for example, is not the same as:
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when(X=(f:Y,g:Y),bar(X))

because the former waits until the F and G values of X are equal, whereas the latter
waits until the F and G values of X are both equal to the value of some variable Y.
Variables such as Y are quantified with scope over the entire clause within which
the when/2 statement occurs, just as any other body variable in ALE or Prolog.
Unlike Prolog, however, ALE provides the ability to change this quantification to
take narrower scope in block conditions. The goal

when(Y^(X=(f:Y,g:Y)),bar(X))

is equivalent to a delay on a path equation between F and G, as in the first alter-
native above. It waits until there exists a Y such that both the F and G values are
equal to it. Y is called a narrowly quantified variable, and its scope is the when/2

statement in which it occurs. When baz/2 is called by this clause, for example:

foo(X) :-

Z = f:Y,

when(Y^(X=(f:Y,g:Y)),baz(Y,Z)).

the first occurrence of Y is not necessarily the same as the F and G values of X
(which are both equal to the first argument of baz/2). The first occurrence of Z,
on the other hand, is the same as the second argument of baz/2.

The left-hand side variable of a conditional equation may not be a narrowly
quantified variable with scope over the same when/2 goal. In other words, this
goal:

when(X^(X=f:t),foo(Y))

is not allowed, whereas this goal:

when(X^(Y=f:(t,X)),when(X=g:t,foo(Y)))

is allowed. X can occur on the left-hand side of the blocked when/2 goal because
it was narrowly quantified in a different when/2 goal.



Chapter 6

Phrase Structure Grammars

The ALE phrase structure processing component is loosely based on a combina-
tion of the functionality of the PATR-II system and the DCG system built into Pro-
log. Roughly speaking, ALE provides a system like that of DCGs, with two primary
differences. The first difference stems from the fact that ALE uses attribute-value
logic descriptions of typed feature structures for representing categories and their
parts, while DCGs use first-order terms (or possibly cyclic variants thereof). The
second primary difference is that ALE’s parser uses a bottom-up active chart pars-
ing algorithm and a semantic-head-driven generator rather than encoding gram-
mars directly as Prolog clauses and evaluating them top-down and depth-first. In
the spirit of DCGs, ALE allows definite clause procedures to be attached and evalu-
ated at arbitrary points in a phrase structure rule, the difference being that these
rules are given by definite clauses in ALE’s logic programming system, rather than
directly in Prolog.

Phrase structure grammars come with two basic components, one for describ-
ing lexical entries and empty categories, and one for describing grammar rules.
We consider these components in turn.

6.1 Lexical Entries

Lexical entries in ALE are specified as rewriting rules, as given by the following BNF

syntax:

<lex_entry> ::= <word> ---> <desc>.

For instance, in the categorial grammar lexicon in the appendix, the following
lexical entry is provided, along with the relevant macros:

john --->

@ pn(j).

pn(Name) macro

synsem: @ np(Name),

@ quantifier_free.

np(Ind) macro

47
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syn:np,

sem:Ind.

quantifier_free macro

qstore:[].

Read declaratively, this rule says that the word john has as its lexical category the
most general satisfier of the description @ pn(j), which is:

cat

SYNSEM basic

SYN np

SEM j

QSTORE e_list

Note that this lexical entry is equivalent to that given without macros by:

john --->

synsem:(syn:np,

sem:j),

qstore:e_list.

Macros are useful as a method of organizing lexical information to keep it consis-
tent across lexical entries. The lexical entry for the word runs is:

runs ---> @ iv((run,runner:Ind),Ind).

iv(Sem,Arg) macro

synsem:(backward,

arg: @ np(Arg),

res:(syn:s,

sem:Sem)),

@ quantifier_free.

This entry uses nested macros along with structure sharing, and expands to the
category:

cat

SYNSEM backward

ARG synsem

SYN np

SEM [0] sem_obj

RES SYN s

SEM run

RUNNER [0]

QSTORE e_list

It also illustrates how macro parameters are in fact treated as variables.
Multiple lexical entries may be provided for each word. Disjunctions may also

be used in lexical entries, but are expanded out at compile-time. Thus the first
three lexical entries, taken together, compile to the same result as the fourth:
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bank --->

syn:noun,

sem:river_bank.

bank --->

syn:noun,

sem:money_bank.

bank --->

syn:verb,

sem:roll_plane.

bank --->

( syn:noun,

sem:( river_bank

; money_bank

)

; syn:verb,

sem:roll_plane

).

Note that this last entry uses the standard Prolog layout conventions of placing
each conjunct and disjunct on its own line, with commas at the end of lines, and
disjunctions set off with vertically aligned parentheses at the beginning of lines.

The compiler finds all the most general satisfiers for lexical entries at compile
time, reporting on those lexical entries that have unsatisfiable descriptions. In the
above case of bank, the second combined method is marginally faster at compile-
time, but their run-time performance is identical. The reason for this is that both
entries have the same set of most general satisfiers.

ALE supports the construction of large lexica, as it relies on Prolog’s hashing
mechanism to actually look up a lexical entry for a word during bottom-up pars-
ing. For generation, ALE indexes lexical entries for faster unification, as described
in Penn and Popescu (1997). Constraints on types can also be used to enforce
conditions on lexical representations, allowing for further factorization of infor-
mation.

6.2 Empty Categories

ALE allows the user to specify certain categories as occurring without any corre-
sponding surface string. These are usually referred to somewhat misleadingly as
empty categories, or sometimes as null productions. In ALE, they are supported by
a special declaration of the form:

empty <desc>.

Where <desc> is a description of the empty category.
For example, a common treatment of bare plurals is to hypothesize an empty

determiner. For instance, consider the contrast between the sentences kids over-
turned my trash cans and a kid overturned my trash cans. In the former sentence,
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which has a plural subject, there is no corresponding determiner. In our catego-
rial grammar, we might assume an empty determiner with the following lexical
entry (presented here with the macros expanded):

empty @ gdet(some).

gdet(Quant) macro

synsem:(forward,

arg:(syn:(n,

num:plu),

sem:(body:Restr,

ind:Ind)),

res:(syn:(np,

num:plu),

sem:Ind),

qstore:[ (Quant,

var:Ind,

restr:Restr) ].

Of course, it should be noted that this entry does not match the type system of
the categorial grammar in the appendix, as it assumes a number feature on nouns
and noun phrases.

Empty categories are expensive to compute under a bottom-up parsing
scheme such as the one used in ALE. The reason for this is that these categories
can be used at every position in the chart during parsing (with the same begin
and end points). If the empty categories cause local structural ambiguities, pars-
ing will be slowed down accordingly as these structures are calculated and then
propagated. Consider the empty determiner given above. It can be used as an
inactive edge at every node in the chart, then match the forward application rule
scheme and search through every edge to its right looking for a nominal comple-
ment. If there are relatively few nouns in a sentence, not many noun phrases will
be created by this rule and thus not many structural ambiguities will propagate.
But in a sentence such as the kids like the toys, there will be an edge spanning kids
like the toys corresponding to an empty determiner analysis of kids. The corre-
sponding noun phrase created spanning toys will not propagate any further, as
there is no way to combine a noun phrase with the determiner the. But now con-
sider the empty slash categories of form X=X in GPSG. These categories, when
coupled with the slash passing rules, would roughly double parsing time, even for
sentences that can be analyzed without any such categories. The reason is that
these empty categories are highly underspecified and thus have many options for
combinations. Thus empty categories should be used sparingly, and prefarably
in environments where their effects will not propagate.

Another word of caution is in order concerning empty categories: they can
occur in constructions with other empty categories. For instance, if we specify
categories C1 and C2 as empty categories, and have a rule that allows a C to be
constructed from a C1 and a C2, then C will act as an empty category, as well.
These combinations of empty categories are computed at compile-time; but the
sheer number of empty categories produced under this closure may be a pro-
cessing burden if they apply at run-time too productively. Keep in mind that ALE
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computes all of the inactive edges that can be produced from a given input string,
so there is no way of eliminating the extra work produced by empty categories in-
teracting with other categories, including empty ones.

6.3 ALE Lexical Rules

Lexical rules provide a mechanism for expressing redundancies in the lexicon,
such as the kinds of inflectional morphology used for word classes, derivational
morphology as found with suffixes and prefixes, as well as zero-derivations as
found with detransitivization, nominalization of some varieties and so on. The
format ALE provides for stating lexical rules is similar to that found in both PATR-
II and HPSG.

In order to implement them efficiently, lexical rules, as well as their effects on
lexical entries, are compiled in much the same way as grammars. To enhance
their power, lexical rules, like grammar rules, allow arbitrary procedural attach-
ment with ALE definite constraints.

The lexical rule system of ALE is productive in that it allows lexical rules to ap-
ply sequentially to their own output or the output of other lexical rules. Thus, it
is possible to derive the nominal runner from the verb run, and then derive the
plural nominal runners from runner, and so on. At the same time, the lexical sys-
tem is leashed to a fixed depth-bound, which may be specified by the user. This
bound limits the number of rules that can be applied to any given category. The
bound on application of rules is specified by a command such as the following,
which should appear somewhere at the beginning of the input file:

:-lex_rule_depth(2).

Of course, bounds other than 2 can be used. The bound indicates how many
applications of lexical rules can be made, and may be 0. If there is more than one
such specification in an input file, the last one will be the one that is used. If no
specification is given, the default is 2.

The format for lexical rules is as follows:

<lex_rule> ::= <lex_rule_name> lex_rule <lex_rewrite>

morphs <morphs>.

<lex_rewrite> ::= <desc> **> <desc>

| <desc> **> <desc> if <goal>

<morphs> ::= <morph>

| <morph>, <morphs>

<morph> ::= (<string_pattern>) becomes (<string_pattern>)

| (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>

<string_pattern> ::= <atomic_string_pattern>

| <atomic_string_pattern>, <string_pattern>
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<atomic_string_pattern> ::= <atom>

| <var>

| <list(<var_char>)>

<var_char> ::= <char>

| <var>

An example of a lexical rule with almost all of the bells and whistles (we put off
procedural attachment for now) is:

plural_n lex_rule

(n,

num:sing)

**> (n,

num:plu)

morphs

goose becomes geese,

[k,e,y] becomes [k,e,y,s],

(X,man) becomes (X,men),

(X,F) becomes (X,F,es) when fricative(F),

(X,ey) becomes (X,[i,e,s]),

X becomes (X,s).

fricative([s]).

fricative([c,h]).

fricative([s,h]).

fricative([x]).

We will use this lexical rule to explain the behavior of the lexical rule system. First
note that the name of a lexical rule, in this case plural n, must in general be a Pro-
log atom. Further note that the top-level parentheses around both the descrip-
tions and the patterns are necessary. If the Prolog goal, in this case fricative(F),
had been a complex goal, then it would need to be parenthesized as well. The next
thing to note about the lexical rule is that there are two descriptions — the first
describes the input category to the rule, while the second describes the output
category. These are arbitrary descriptions, and may contain disjunctions, macros,
etc. We will come back to the clauses for fricative/1 shortly. Note that the pat-
terns in the morphological component are built out of variables, sequences and
lists. Thus a simple rewriting can be specified either using atoms as with goose

above, with a list, as in [k,e,y], or with a sequence as in (X,man), or with both,
as in (X,[i,e,s]). The syntax of the morphological operations is such that in
sequences, atoms may be used as a shorthand for lists of characters. But lists
must consist of variables or single characters only. Thus we could not have used
(X,[F]) in the fricative case, as F might is itself a complex list such as [s,h] or
[x]. But in general, variables ranging over single characters can show up in lists.

The basic operation of a lexical rule is quite simple. First, every lexical entry,
including a word and a category, that is produced during compilation is checked
to see if its category satisfies the input description of a lexical rule. If it does,
then a new category is generated to satisfy the output description of the lexical
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rule, if possible. Note that there might be multiple solutions, and all solutions
are considered and generated. Thus multiple solutions to the input or output
descriptions lead to multiple lexical entries.

After the input and output categories have been computed, the word of the in-
put lexical entry is fed through the morphological analyzer to produce the corre-
sponding output word. Unlike the categorial component of lexical rules, only one
output word will be constructed, based on the first input/output pattern that is
matched.1 The input word is matched against the patterns on the left hand side of
the morphological productions. When one is found that the input word matches,
any condition imposed by a when clause on the production is evaluated. This or-
dering is imposed so that the Prolog goal will have all of the variables for the input
string instantiated. At this point, Prolog is invoked to evaluate the when clause. In
the most restricted case, as illustrated in the above lexical rule, Prolog is only used
to provide abbreviations for classes. Thus the definition for fricative/1 consists
only of unit clauses. For those unfamiliar with Prolog, this strategy can be used in
general for simple morphological abbreviations. Evaluating these goals requires
the F in the input pattern to match one of the strings given. The shorthand of
using atoms for the lists of their characters only operates within the morpholog-
ical sequences. In particular, the Prolog goals do not automatically inherit the
ability of the lexical system to use atoms as an abbreviation for lists, so they have
to be given in lists. Substituting fricative(sh) for fricative([s,h])would not
yield the intended interpretation. Variables in sequences in morphological pro-
ductions will always be instantiated to lists, even if they are single characters. For
instance, consider the lexical rule above with every atom written out as an explicit
list:

[g,o,o,s,e] becomes [g,e,e,s,e],

[k,e,y] becomes [k,e,y,s],

(X,[m,a,n]) becomes (X,[m,e,n]),

(X,F) becomes (X,F,[e,s]) when fricative(F),

(X,[e,y]) becomes (X,[i,e,s]),

X becomes (X,[s]).

In this example, the s in the final production is given as a list, even though it is
only a single character.

The morphological productions are considered one at a time until one is
matched. This ordering allows a form of suppletion, whereby special forms such
as those for the irregular plural of goose and key to be listed explicitly. It also
allows subregularities, such as the rule for fricatives above, to override more gen-
eral rules. Thus the input word beach becomes beaches because beach matches
(X,F)with X = [b,e,a]and F = [c,h], the goal fricative([c,h])succeeds and
the word beachesmatches the output pattern (X,F,[e,s]), instantiated after the
input is matched to ([b,e,a],[c,h],[e,s]). Similarly, words that end in [e,y]

have this sequence replaced by [i,e,s] in the plural, which is why an irregular
form is required for keys, which would otherwise match this pattern. Finally, the

1Thus ALE’s lexical rule system is not capable of handling cases of partial suppletion, where both
a regular and irregular morphological form are both allowed. To allow two ouptut forms, one must
be coded by hand with its own lexical entry or a separate lexical rule.
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last rule matches any input, because it is just a variable, and the output it pro-
duces simply suffixes an [s] to the input.

For lexical rules with no morphological effect, the production:

X becomes X

suffices. To allow lexical operations to be stated wholly within Prolog, a rule may
be used such as the following:

X becomes Y when morph_plural(X,Y)

In this case, when morph plural(X,Y) is called, X will be instantiated to the list of
the characters in the input, and as a result of the call, Y should be instantiated to
a ground list of output characters.

We finally turn to the case of lexical rules with procedural attachments, as in
the following (simplified) example from HPSG:

extraction lex_rule

local:(cat:(head:H,

subcat:Xs),

cont:C),

nonlocal:(to_bind:Bs,

inherited:Is)

**> local:(cat:(head:H,

subcat:Xs2),

cont:C),

nonlocal:(to_bind:Bs,

inherited:[G|Is])

if

select(G,Xs,Xs2)

morphs

X becomes X.

select(X,(hd:X),Xs) if true.

select(X,[Y|Xs],[Y|Ys]) if

select(X,Xs,Ys).

This example illustrates an important point other than the use of conditions on
categories in lexical rules. The point is that even though only the LOCAL CAT

SUBCAT and NONLOCAL INHERITED paths are affected, information that stays the
same must also be mentioned. For instance, if the cont:C specification had been
left out of either the input our output category description, then the output cate-
gory of the rule would have a completely unconstrained content value. This dif-
fers from the default-based nature of the usual presentation of lexical rules, which
assumes all information that hasn’t been explicitly specified is shared between the
input and the output. As another example, we must also specify that the HEAD and
TO BIND features are to be copied from the input to the output; otherwise there
would be no specification of them in the output of the rule. This fact follows from
the description of the application of lexical rules: they match a given category
against the input description and produce the most general category(s) matching
the output description.
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Turning to the use of conditions in the above rule, the select/3 predicate is
defined so that it selects its first argument as a list member of its second argu-
ment, returning the third argument as the second argument with the selected el-
ement deleted. In effect, the above lexical rule produces a new lexical entry which
is like the original entry, except for the fact that one of the elements on the subcat
list of the input is removed from the subcat list and added to the inherited value
in the output. Nothing else changes.

Procedurally, the definite clause is invoked after the lexical rule has matched
the input description against the input category. Like the morphological system,
this control decision was made to ensure that the relevant variables are instanti-
ated at the time the condition is resolved. The condition here can be an arbitrary
goal, but if it is complex, there should be parentheses around the whole thing.
Cuts should not be used in conditions on lexical rules (see the comments on cuts
in grammar rules below, which also apply to cuts in lexical rules).

Currently, ALE does not check for redundancies or for entries that subsume
each other, either in the base lexicon or after closure under lexical rules. ALE also
does not apply lexical rules to empty categories.

6.4 Grammar Rules

Grammar rules in ALE are of the phrase structure variety, with annotations for
both goals that need to be solved and for attribute-value descriptions of cate-
gories. The BNF syntax for rules is as follows:

<rule> ::= <rule_name> rule <desc> ===> <rule_body>.

<rule_body> ::= <rule_clause>

| <rule_clause>, <rule_body>

<rule_clause> ::= cat> <desc>

| cats> <desc>

| sem_head> <desc>

| goal> <goal>

| sem_goal> <goal>

The <rule name>must be a Prolog atom. The description in the rule is taken to be
the mother category in the rule, while the rule body specifies the daughters in the
rule along with any side conditions on the rule, expressed as ALE goals. A further
restriction on rules, which is not expressed in the BNF syntax above, is that there
must be at least one category-seeking rule clause in each rule body.2 Thus empty
productions are not allowed and will be flagged as errors at compile time.

A simple example of such a rule, without any goals, is as follows:

s_np_vp rule

(syn:s,

sem:(VPSem,

agent:NPSem))

2By doubling the size of the BNF for rules, this requirement could be expressed.
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===>

cat>

(syn:np,

agr:Agr,

sem:NPSem),

cat>

(syn:vp,

agr:Agr,

sem:VPSem).

There are a few things to notice about this rule. The first is that the parentheses
around the category and mother descriptions are necessary. Looking at what the
rule means, it allows the combination of an np category with a vp type category
if they have compatible (unifiable) values for agr. It then takes the semantics of
the result to be the semantics of the verb phrase, with the additional information
that the noun phrase semantics fills the agent role.

Unlike the PATR-II rules, but similar to DCG rules, “unifications” are specified
by variable co-occurrence rather than by path equations, while path values are
specified using the colon rather than by a second kind of path equation. The rule
above is similar to a PATR-II rule which would look roughly as follows:

x0 ---> x1, x2 if

(x0 syn) == s,

(x1 syn) == np,

(x2 syn) == vp,

(x0 sem) == (x2 sem),

(x0 sem agent) == (x1 sem),

(x1 agr) == (x2 agr)

Unlike lexical entries, rules are not expanded to feature structures at compile-
time. Rather, they are compiled down into structure-copying operations involv-
ing table look-ups for feature and type symbols, unification operations for vari-
ables, sequencing for conjunction, and choice point creation for disjunction.

The descriptions for cat> and cats> daughters are always evaluated in the
order they are specified, from left to right. This is significant when considering
goals that might be interleaved with searches in the chart for consistent daugh-
ter categories. The order in which the code for the mother’s and semantic head’s
descriptions is executed depends on the control strategy used during parsing or
generation. These are described in Sections 6.4.3 and 6.4.4, respectively. In the-
ory, the same grammar can be used for both parsing and generation. In practice,
a single grammar is rarely efficient in both directions, and can even exhibit ter-
mination problems in one, just as a Prolog program may have these problems
with queries that have different argument instantiations. So while it is not nec-
essary to fully understand the parsing or generation algorithms used by ALE to
exploit its power for developing grammars, practical implementations will order
their procedural attachments and distribute their description-level information
with these algorithms in mind.

Within a single description, in the case of feature and type symbols, a double-
hashing is performed on the type of the structure being added to, as well as either
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the feature or the type being added. Additional operations arise from type coer-
cions that adding features or types require. Thus there is nothing like disjunctive
normal-form conversion of rules at compile time, as there is for lexical entries. In
particular, if there is a local disjunction in a rule, it will be evaluated locally at run
time. For instance, consider the following rule, which is the local part of HPSG’s
Schema 1:

schema1 rule

(cat:(head:Head,

subcat:[]),

cont:Cont)

===>

cat>

(Subj,

cat:head:( subst

; spec:HeadLoc,

)),

cat>

(HeadLoc,

cat:(head:Head,

subcat:[Subj]),

cont:Cont).

Note that there is a disjunction in the cat:head value of the first daughter cate-
gory (the subject in this case). This disjunction represents the fact that the head
value is either a substantive category (one of type subst), or it has a specifier value
which is shared with the entire second daughter. But the choice between the dis-
juncts in the first daughter of this rule is made locally, when the daughter category
is fully known, and thus does not create needless rule instantiations.

ALE’s general treatment of disjunction in descriptions, which is an extension of
Kasper and Round’s (1986) attribute-value logic to phrase structure rules, is a vast
improvement over a system such as PATR-II, which would not allow disjunction in
a rule, thus forcing the user to write out complete variants of rules that only differ
locally. Disjunctions in rules do create local choice points, though, even if the
first goal in the disjunction is the one that is solvable.3 This is because, in general,
both parts of a disjunction might be consistent with a given category, and lead to
two solutions. Or one disjunct might be discarded as inconsistent only when its
variables are further instantiated elsewhere in the rule.

6.4.1 Procedural Attachments

A more complicated rule, drawn from the categorial grammar in the appendix is
as follows:

backward_application rule

(synsem:Z,

qstore:Qs)

3In a future release, cuts will be allowed within descriptions, to allow the user to eliminate dis-
junctive choice points when possible.
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===>

cat>

(synsem:Y,

qstore:Qs1),

cat>

(synsem:(backward,

arg:Y,

res:Z),

qstore:Qs2),

goal>

append(Qs1,Qs2,Qs).

Note that the goal in this rule is specified after the two category descriptions. Con-
sequently, it will be evaluated after categories matching the descriptions have al-
ready been found, thus ensuring in this case that the variables Qs1 and Qs2 are
instantiated. The append(Qs1,Qs2,Qs) goal is evaluated by ALE’s definite clause
resolution mechanism. goal> attachments are always evaluated in the order they
are specified relative to the enforcement of cat> and cats> daughters, from left
to right. All possible solutions to the goal are found with the resulting instanti-
ations carrying over to the rule. These solutions are found using the depth-first
search built into ALE’s definite constraint resolver. In general, goals may be in-
terleaved with the category specifications, giving the user control over when the
goals are fired. Also note that goals may be arbitrary cut-free ALE definite clause
goals, and thus may include disjunctions, conjunctions, and negations. Cuts may
occur, however, within the code for any literal clause specified in a procedural at-
tachment. The attachments themselves must be cut-free to avoid the cut taking
precedence over the entire rule after compilation, thus preventing the rule to ap-
ply to other edges in the chart or for later rules to apply. Instead, if cuts are desired
in rules, they must be encapsulated in an auxiliary predicate, which will restrict
the scope of the cut. For instance, in the context of a phrase structure rule, rather
than a goal of the form:

goal>

(a, !, b)

it is necessary to encode this as follows:

goal>

c

where the predicate c is defined by:

c if

(a, !, b).

This prevents backtracking through the cut in the goal, but does not block the
further application of the rule. A similar strategy should be employed for cuts in
lexical rules.

As a programming strategy, rules should be formulated like Prolog clauses, so
that they fail as early as possible. Thus the features that discriminate whether
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a rule is applicable should occur first in category descriptions. The only work
incurred by testing whether a rule is applicable is up to the point where it fails.

Just as with PATR-II, ALE is RE-complete (equivalently, Turing-equivalent),
meaning that any computable language can be encoded. Thus it is possible to
represent undecidable grammars, even without resorting to the kind of procedu-
ral attachment possible with arbitrary definite clause goals. With its mix of depth-
first and breadth-first evaluation strategies, ALE is not strictly complete with re-
spect to its intended semantics if an infinite number of edges can be generated
with the grammar. This situation is similar to that in Prolog, where a declaratively
impeccable program might hang operationally.

6.4.2 The cats> Operator

The cats> operator is used to describe a list of daughters, whose length cannot be
determined until run-time. Daughters are not parsed or generated as quickly as
part of a cats> specification. Note also the interpretation of cats> requires that
its argument is subsumed by the type list, which must be defined, along with
ne list, e list, etc., and the features HD, and TL, which we defined above. This
check is not made using unification, so that an underspecified list argument will
not work either. If the argument of cats> is not subsumed by list, then the rule
in which that argument occurs will never match any string, and a run-time error
message will be given. This operator is useful for so-called “flat” rules, such as
HPSG’s Schema 2, part of which is given (in simplified form) below:

schema2 rule

(cat:(head:Head,

subcat:[Subj]))

===>

cat>

(cat:(head:Head,

subcat:[Subj|Comps])),

cats> Comps.

Since various lexical items have SUBCAT lists of various lengths, e.g., zero for
proper nouns, one for intransitive verbs, two for transitive verbs, cats> is required
in order to match the actual list of complements at run-time.

It is common to require a goal to produce an output for the argument of cats>.
If this is done, the goal must be placed before the cats>. Our use of cats> is
problematic in that we require the argument of cats> to evaluate to a list of fixed
length. Thus parsing with the following head-final version of HPSG’s Schema 2
would not work:

schema2 rule

(cat:(head:Head,

subcat:[SubjSyn]))

===>

cats> Comps,

cat>

(cat:(head:Head,

subcat:[Subj|Comps])).
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One way to work around this is to place some finite upper bound on the size of
the Comps list by means of a constraint.

schema2 rule

(cat:(head:Head,

subcat:[SubjSyn]))

goal> three_or_less(Comps),

cats> Comps,

cat>

(cat:(head:Head,

subcat:[Subj|Comps])).

three_or_less([]) if true.

three_or_less([_]) if true.

three_or_less([_,_]) if true.

three_or_less([_,_,_]) if true.

The problem with this strategy from an efficiency standpoint is that arbitrary se-
quences of three categories will be checked at every point in the grammar; in the
English case, the search is directed by the types instantiated in Comps as well as
that list’s length. From a theoretical standpoint, it is impossible to get truly un-
bounded length arguments in this way.

6.4.3 Parsing

The ALE system employs a bottom-up active chart parser that has been tailored
to the implementation of attribute-value grammars in Prolog. The single most
important fact to keep in mind is that rules are evaluated from left to right, with
the mother description coming last. Most of the implementational considera-
tions follow from this rule evaluation principle and its specific implementation
in Prolog. In parsing, sem head> and sem goal> specifications are treated exactly
as cat> and goal> specifications, respectively.

The chart is filled in using a combination of depth- and breadth-first control.
In particular, the edges are filled in from right to left, even though the rules are
evaluated from left to right. Furthermore, the parser proceeds breadth-first in
the sense that it incrementally moves through the string from right to left, one
word at a time, recording all of the inactive edges that can be created beginning
from the current left-hand position in the string. For instance, in the string The

kid ran yesterday, the order of processing is as follows. First, lexical entries for
yesterday are looked up, and entered into the chart as inactive edges. For each
inactive edge that is added to the chart, the rules are also fired according to the
bottom-up rule of chart parsing. But no active edges are recorded. Active edges
are purely dynamic structures, existing only locally to exploit Prolog’s copying and
backtracking schemes. The benefit of parsing from right to left is that when an ac-
tive edge is proposed by a bottom-up rule, every inactive edge it might need to be
completed has already been found. This is actually true as long as the direction of
traversal through the string is the opposite of the direction of matching daughter
categories in a rule; thus the real reason for the right-to-left parsing strategy is
to allow the active edges to be represented dynamically, while still evaluating the
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rules from left to right. While the overall strategy is bottom-up, and breadth-first
insofar as it steps incrementally through the string, filling in every possible inac-
tive edge as it goes, the rest of the processing is done depth-first to keep as many
data structures dynamic as possible, to avoid copying other than that done by
Prolog’s backtracking mechanism. In particular, lexical entries, bottom-up rules,
and active edges are all evaluated depth-first, which is perfectly sound, because
they all start at the same left point (that before the current word in the right to left
pass through the string), and thus do not interact with one another.

ALE computes the closure of its grammar rules under application of the first
daughter’s description to empty categories at compile-time. This is known as
Empty-First-Daughter closure or EFD closure. This closure operation has three
advantages. First, given ALE’s combination of depth-first and breadth-first pro-
cessing, it is necessary in order to ensure completeness of parsing with empty
categories, because any permutation of empty categories can, in principle, be
combined to form a new empty category. Second, it works around a problem that
many non-ISO-compatible Prologs, including SICStus Prolog, have with asserted
predicates that results in empty category leftmost daughters not being able to
combine with their own outputs. Third, it allows the run-time parser to estab-
lish a precondition that rules only need to be closed with non-empty leftmost
daughters at run-time. As a result, when a new mother category is created and
closed under rules as the leftmost daughter, it cannot combine with other edges
created with the same left node. This allows ALE, at each step in its right-to-left
pass throught the input string, to copy all of the edges in the internal database
back onto the heap before they can be used again, and thus reduces edge copy-
ing to a constant two times per edge for non-empty categories. Keeping a copy
of the chart on the heap also allows for more sophisticated indexing strategies
that would otherwise be overwhelmed by the cost of copying edges with large-
sized categories in Prolog before the match. The EFD closure algorithm itself is
described in Penn (1999).

EFD closure potentially creates new rules, a prefix of whose daughters have
matched empty categories, and new empty categories, formed when every
daughter of a rule has matched an empty category. The closure in computed
breadth-first.

EFD closure may not terminate. As a result, compilation of some grammars
may go into infinite loops. This only occurs, however, with grammars for which
every parse would go into an infinite loop at run-time if EFD closure were not
applied — specifically, when empty categories alone can produce infinitely many
empty categories using the rules of the grammar. Because early versions of ALE

did not compute a complete closure of grammar rules over empty categories
(even at run-time), some grammars that terminated at run-time under these early
versions will not terminate at compile-time under the current version.

Rules can incorporate definite clause goals before, between or after category
specifications. These goals are evaluated when they are found. For instance, if a
goal occurs between two categories on the right hand side of a rule, the goal is
evaluated after the first category is found, but before the second one is. The goals
are evaluated by ALE’s definite clause resolution mechanism, which operates in
a depth-first manner. Thus care should be taken to make sure the required vari-
ables in a goal are instantiated before the goal is called. The resolution of all goals
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should terminate with a finite (possibly empty) number of solutions, taking into
account the variables that are instantiated when they are called.

The parser will terminate after finding all of the inactive edges derivable from
the lexical entries and the grammar rules. Of course, if the grammar is such that
an infinite number of derivations can be produced, ALE will not terminate. Such
an infinite number of derivations can creep in either through recursive unary
rules or through the evaluation of goals.

ALE now has an optional mechanism for checking edge subsumption (Sec-
tion 2.9). This can be used to prevent the propagation of spurious ambiguities
through the parse. A category C spanning a given subsequence is said to be spu-
rious if there is another category C 0 spanning the same subsequence such that
C is subsumed by C 0. Only the most general category needs to be recorded to
ensure soundness. It can also be used to detect two derivations of the same cat-
egory. Our experience, however, has been that most unification-based grammars
do not have any spurious ambiguity. They normally incorporate some notion of
thematic or functional structure representing the meaning of a sentence; and in
these cases, most structural ambiguities result in semantic ambiguities. For such
grammars, subsumption checking is probably not worth the effort, and should be
left disabled.

6.4.4 Generation

ALE also contains a generator, based on the Semantic Head-Driven Generation al-
gorithm of van Noord (1989), as extended by Shieber et al. (1990), and adapted to
the typed feature logic of Carpenter (1992) by Popescu (1996). Its implementation
in ALE is described in Penn and Popescu (1997).

Given a description of a feature structure, ALE’s generator will non-
deterministically generate all the word strings that correspond to its most general
satisfier(s). In other words, the generated word strings, when parsed in ALE using
the same grammar, will result in feature structures that unify with a most general
satisfier of the initial description (rather than necessarily be identical). That part
of the feature structure which represents semantic information drives the gener-
ation process.

The semantics/1Directive

ALE identifies this part using a user-defined directive, semantics/1. This directive
distinguishes a binary user-defined definite clause predicate as the predicate to
use to find semantic information. The first argument is always the feature struc-
ture whose semantics are being identified; and the second argument is always the
semantic information. The example below, taken again from the sample genera-
tion grammar, simply says that the semantics of a feature structure is the value of
its sem feature:

semantics sem1.

sem1(sem:S,S) if true.

In general, the second argument does not need to be a sub-structure of the
first — it could have a special type that is used only for the purpose of collect-
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ing semantic information, possibly spread over several unrelated sub-structures.
The body can be arbitrarily complex; and there can be multiple clauses for the
definition of this predicate. The predicate must, however, have the property that
it will terminate when only its first argument is instantiated, and when only its
second argument is instantiated. ALE will use this predicate in both “directions”
— to find semantics information, and in reverse to build templates to find struc-
tures that have matching semantic information. There can be only one predicate
distinguished by semantics/1. If there are multiple directives, ALE will only use
the first.

Semantic-head-driven generation makes use of the notion of a semantic head
of a rule, a daughter whose semantics is shared with the mother. In semantic-
head-driven generation, there are two kinds of rules: chain rules, which have a
semantic head, and non-chain rules, which lack such a head. These two subsets
are processed differently during the generation process.

Given a feature structure, called the root goal, to generate a string for, the gen-
erator builds a new feature structure that shares its semantic information (using
the user-defined semantics predicate with the second argument instantiated) and
finds a pivot that unifies with it. The pivot is the lowest node in a derivation tree
that has the same semantics as the root. The pivot may be either a lexical entry
or empty category (the base cases), or the mother category of a non-chain rule.
Once a pivot is identified, one can recursively generate top-down from the pivot
using non-chain rules. Since the pivot must be the lowest, there can be no lower
semantic heads, and thus no lower chain-rule applications. Just as in parsing, the
daughters of non-chain rules are processed from left to right.

Once top-down generation from the pivot is complete, the pivot is linked to
the root bottom-up by chain rules. At each step, the current chain node (begin-
ning with the pivot) is unified with the semantic head of a chain-rule, its non-
head sisters are generated recursively, and the mother becomes the new chain
node. The non-head daughters of chain rules are also processed from left to right.
The base case is where the current chain node unifies with the root.

To avoid the non-termination problem that arises from infinitely long seman-
tic head ! mother sequences in a grammar, ALE requires the user to specify a
bound on the length of chain rule sequences at compile-time. This can be speci-
fied with the declaration:

:- chain_length(4).

Other values than 4 can be used, including 0. The default value is 4. ALE compiles
chains of semantic head and mother descriptions of this length to perform the
pivot check more efficiently at run-time.

The sem goal> Operator

For the most part, the generator treats procedural attachments as the parser does
— it evaluates them with respect to other daughter specifications in the order
given. The one exception to this is sem goal> attachments. These goals are dis-
tinguished as attached to the semantic head, and are therefore evaluated either
immediately before or immediately after the sem head> description. As a result,
sem goal> specification can only occur immediately before or immediately after a
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sem head> specification; and thus only in chain rules. sem goal> attachments are
not evaluated during the pivot check described above — only the sem head> and
mother descriptions. During parsing, sem goal> specifications are treated exactly
the same as goal> specifications, i.e., evaluated in order.

To summarize, the order of execution for a non-chain rule specification dur-
ing generation is:

� the mother description, then

� the cat>, cats>, and goal> descriptions, in order, from left to right.

There are no sem head> or sem goal> specifications in a non-chain rule. The order
for a chain rule specification during generation is:

� the pre-head sem goal> specification, if it exists,

� the sem head> description,

� the post-head sem goal> specification, if it exists,

� the mother description, then4

� the cat>, cats> and goal> specifications, in order, from left to right.

Again, practical grammar implementations will arrange information in rules in
such a way as to ensure termination and to force failure as early as possible. For
non-chain rules, this means making the mother and early daughters or goals as
informative as possible at the description level (that is, up to where type inferenc-
ing can take over). For chain rules, the semantic head and its attachments should
be maximally informative.

4The standard head-driven-generation algorithm enforces the mother description after the non-
semantic-head-related daughters. We deviate from this order in order to enforce the pivot check,
which requires instantiating the mother, more efficiently.
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T6.1 Test sequences

T6.1.1 Test files

Test items are encoded as t/5 facts:

t(Nr,``Test Item'',Desc,ExpSols,'Comment').

� Nr: test item ID number

� Test Item: test string, must be enclosed in double-quotes

� Desc: optional start category description, leave uninstantiated to get all pos-
sible parses

� ExpSols: expected number of solutions

� Comment: optional comment, enclosed in single-quotes

T6.1.2 Test queries

Basic test queries

� with pop-up structures
test(Nr).

test([From,To]).

test(all).

� without structures
testt(Nr).

testt([From,To]).

testt(all).

Testing with descriptions

� with pop-up structures
test(Nr,Desc).

test([From,To],Desc).

test(all,Desc).

� without structures
testt(Nr,Desc).

testt([From,To],Desc).

testt(all,Desc).

The value of Desc overrides any description given in t/5. If Desc is a variable (or
bot or sign) all parses are returned. The expected number of solutions given in
t/5 is ignored.



Chapter 7

TRALE Lexical Rule Compiler

Vanessa Metcalf and Detmar Meurers, Ohio State University 1

T7.1 Introduction

In the framework of Head-Driven Phrase Structure Grammar (HPSG, Pollard and
Sag 1994) and other current linguistic architectures, linguistic generalizations are
often conceptualized at the lexical level. Among the mechanisms for expressing
such generalizations, so-called lexical rules are used for expressing so-called hor-
izontal generalizations (cf. Meurers 2001, and references cited therein).

Lexical rules have been conceptionalized in two distinct ways, either on a
meta-level as relating lexical entries (i.e., descriptions) or on the same level as
the rest of the grammar, relating lexical objects (i.e., the elements described by
the lexical entries). Computationally the meta-level perspective is captured by
using the lexical rules to enlarge the set of lexical entries defined in the grammar,
whereas under the description-level perspective lexical rules are essentially on
a par with unary phrase structure rules and are taken into account at run time.
The TRALE system offers both mechanisms for implementing lexical rules. The
traditional ALE mechanism for handling lexical rules described elsewhere in this
manual corresponds to the meta-level interpretation of lexical entries. It uses
the lexical rules at compile-time to generate new lexical entries, using a depth-
bound to ensure that this step terminates. The description-level approach is im-
plemented in the lexical rule compiler described in this chapter. It encodes the
treatment of lexical rules proposed in Meurers and Minnen (1997). This chapter
focuses on how to use the lexical rule compiler. A discussion of this approach to
lexical rules can be found in the Reference Manual of the Lexical Rule compiler
and the original paper.

T7.2 Using the lexical rule compiler

The lexical rule compiler is automatically loaded with the main TRALE system,
but it’s important to understand that this lexical rule compiler is essentially a pre-
processor to the normal grammar compilation. Its purpose is to take the lexical

1 c2003, Vanessa Metcalf and Detmar Meurers
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rule definitions and the lexical entries and to produce a lexicon definition that
includes the lexical rule code that needs to be executed at run time. If the gram-
mar contains lexical rules using the syntax described in the following section, one
can call the lexical rule compiler with compile_lrs(<file(s)>)., where <files>

is either a single file or a list of files containing the part of the theory defining the
base lexical entries and the lexical rules. The output of the lexical rule compiler
is written to the file lr_compiler_output.pl. After compilation the user can then
access visual representations of both the global finite-state automaton and the
word class automata.

The command for viewing the global automaton is lr_show_global. The au-
tomata for the different classes of lexical entries are shown using the command
lr_show_automata. Both commands are useful for checking that the expected se-
quences of lexical rule applications are actually possible for the grammar that was
compiled. An example is included at the end of section T7.2.1.

The system can visualize the graphs using either the graphviz (http:
//www.research.att.com/sw/tools/graphviz/) or the vcg http://rw4.cs.

uni-sb.de/users/sander/html/gsvcg1.html tool, which are freely available
and must be installed on your system for the visualization to work. By
default, the graphviz visualization software is used. One can select
vcg by calling set_lr_display_option(vcg). or by including the statement
lr_display_option(vcg). in one of the grammar files loaded by the lexical rule
compiler.

In order to parse using the output of the lexical rule compiler, one must
compile the grammar, without the base lexicon and lexical rules, but includ-
ing the file generated by the lexical rule compiler. For example, if the grammar
without the base lexicon and lexical rules is in the file theory.pl and the lex-
ical rule compiler output is in the file lr_compiler_output.pl one would call
?- compiler_gram([theory,lr_compiler_output]).

T7.2.1 Input syntax

The format of lexical rule specifications for the lexical rule compiler is shown in
figure 7.1. Note that this syntax is different from the lexical rule syntax of ALE ,
which also is provided by the TRALE system. As described in the ALE manual,
lexical rules specified using the ALE lexical rule syntax result in expanding out the
lexicon at compile time.

<lex_rule_name> ===

<input description>

lex_rule

<output description>.

Figure 7.1: Lexical rule input syntax

A lexical rule consists of a lexical rule name, followed by the infix operator ===,
followed by an input feature description, followed by the infix operator lex_rule,
followed by an output feature description and ending with a period.
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Input and output feature descriptions are ordinary descriptions as defined in
the TRALE manual. The lexical compiler currently handles all kinds of descrip-
tions except for path inequalities. Path equalities can be specified within the in-
put or output descriptions, and also between the input and output descriptions.

We illustrate the syntax with the small example grammar from Meurers and
Minnen (1997), which is also included with the TRALE system in the subdirectory
lr_compiler/examples. The signature of this example is shown in figure 7.2; to
illustrate this TRALE signature syntax, figure 7.3 shows the type hierarchy in the
common graphical notation.

type_hierarchy

bot

t w:bool x:bool y:bool

t1

t2 z:list

word a:val b:bool c:t

list

bool

val

list

e_list

ne_list hd:val tl:list

bool

plus

minus

val

a

b

.

Figure 7.2: An example signature

bot

t word list bool val

t1 t2 elist nelist plus minus a b

Figure 7.3: A graphical representation of the example type hierarchy

Based on this signature, figure 7.4 shows a set of four lexical rules exemplifying
the lexical rule syntax used as input to the lexical rule compiler.

To complete the example grammar, we include three examples for base lexical
entries in figure 7.5. These lexical entries can be found in the file lexicon.pl.

The user is encouraged to look at this grammar, run the compiler on it, and
make sure that the resulting output is consistent with the user’s understand-
ing. Visualizing the lexical rule interaction generally is a good way to check
whether the intended lexical rule applications do in fact result from by the lexical
rules that were specified in the grammar. The visualization obtained by calling
lr_show_global/0 for the example grammar is shown in figure 7.6.
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lr_one ===

(b:minus,

c:y:minus)

lex_rule

(a:b,

c:(x:plus,y:plus)).

lr_two ===

(a:b,

b:minus,

c:w:minus)

lex_rule

(c:w:plus).

lr_three ===

(c:(t2,

w:plus,

x:plus,

z:tl:One))

lex_rule

(c:(y:plus,

z:One)).

lr_four ===

(b:minus,

c:(t2,

w:plus,

x:plus,

z:e_list))

lex_rule

(b:plus,

c:x:minus).

Figure 7.4: An example set of four lexical rule
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foo ---> (a:b,

b:minus,

c:(t2,

w:minus,

x:minus,

y:minus,

z:(hd:a,

tl:(hd:b,

tl:e_list)))).

bar ---> (a:b,

b:minus,

c:(t2,

w:minus,

x:minus,

y:minus,

z:(hd:a,

tl:e_list))).

tup ---> (a:b,

b:minus,

c:(t1,

w:minus,

x:minus,

y:minus)).

Figure 7.5: An example set of base lexical entries

Figure 7.6: Global interaction visualization for the example grammar
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The lexical rule interaction which is permitted by a particular lexical class can
also be visualized. To view the automaton of an entry with the phonology Phon

one calls lr_show_automaton(Phon). To view all such automata, the predicate to
call is lr_show_automata/0. In figure 7.7 we see the visualization obtained for the
lexical entry “foo” of our example grammar by calling show_automaton(foo).

Figure 7.7: Interaction visualization for the entry “foo”

T7.2.2 Interpretation

While the basic interpretation of lexical rules is straightforward, it turns out to be
more difficult to answer the question how exactly the intuition should be spelled
out that properties which are not changed by the output of a lexical rule are car-
ried over unchanged, the so-called framing. A detailed discussion of the interpre-
tation of lexical rules and the motivation for this particular interpretation can be
found in Meurers (2001); we focus here on the essential ideas needed to sensibly
use the lexical rule compiler.

A lexical rule can apply to a variety of lexical entities. While each of these lexi-
cal entities must be described by the input of the lexical rule in order for the rule
to apply, other properties not specified by the lexical rule can and will vary be-
tween lexical entries. Feature structures corresponding to lexical entities under-
going the lexical rule therefore may differ in terms of type value and appropriate
features. Frames carrying over properties not changed by the lexical rule need to
take into account different feature geometries. Since framing utilizes structure
sharing between input and output, we only need to be concerned with the differ-
ent kinds of objects that can undergo a lexical rule with regard to the paths and
subpaths mentioned in the output description. Specifically, when the objects un-
dergoing lexical rule application differ with regard to type value along some path
mentioned in the output description, we may need to take into account addi-
tional appropriate attributes in framing. Each such possibility will demand its
own frame.

The lexical rule compiler provides a truthful procedural realization of the for-
mal interpretation of lexical rules defined in Meurers (2001). Generally speaking,
the input description of a lexical rule specifies enough information to capture the
class of lexical entries intended by the user to serve as inputs. The output descrip-
tion, on the other hand, specifies what should change in the derivation. All other
specifications of the input are supposed to stay the same in the output.
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In the spirit of preserving as much information as possible from input to out-
put, we generate frames on the basis of species (= most specific type) pairs; that
is, we generate a frame (an IN-OUT pair) on the basis of a maximally specific in-
put type, and a maximally specific output type, subtypes of those specified in, or
inferred from, the lexical rule description. In this way we maintain tight control
over which derivations we license, and we guarantee that all possible information
is transferred, since the appropriate feature list we use is that of a maximally spe-
cific type. We create a pair of skeleton feature structures for the species pair, and it
is to this pair of feature structures that we add path equalities. We determine the
appropriate list of species pairs on the basis of the types of the input and output
descriptions.

The first step in this process is determining the types of the input and output
of the lexical rule. We then obtain the list of species of the input type, and the list
of species of the output type. We refer to these as the input species list, and the
output species list, and their members as input and output species. At this point
it will be helpful to have an example to work with. Consider the type hierarchy in
figure 7.8.

a

b c d

e f g h i

Figure 7.8: An example hierarchy for illustrating the interpretation

We can couch the relationship between the input and output types in terms
of type unification, or in terms of species set relations. In terms of unification,
there are four possibilities: the result of unification may be the input type, the
output type, something else, or unification may fail. In the first case the input
type is at least as or more specific, and the input species species will be a subset of
the output species. In the second case the output is more specific and the output
species will be a subset of the input species. In the third case the input and output
types have a common subtype, and the intersection of input and output species
is nonempty. In the fourth case the input and output types are incompatible, and
the intersection of their species sets is empty.

If a (maximally specific) type value can be maintained in the output, it is. Oth-
erwise, we map that input species to all output species. In terms of set member-
ship, given a set of input species X, a set of output species Y , the set of species
pairs P thus can be defined as:

P = fhx; xi j x 2 X ^ x 2 Y g [
fhx; yi j x 2 X;x 62 Y ^ y 2 Y g

Given in figure 7.9 are examples of all four cases, using the example signa-
ture, showing input and output types, the result of unification, their species lists,
and the species-pairs licensed by the algorithm described below. Calling these
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Case 1 Case 2 Case 3 Case 4

Input type c a b c
Output type a c c d

Unify to c c f fail
Input species f, g e, f, g, h, i e, f f, g

Output species e, f, g ,h, i f, g, f, g h, i
Species pairs f-f, g-g e-f, e-g, f-f, e-f, e-g, f-f f-h, f-i, g-h,

g-g, h-f, h-g, g-i
i-f, i-g

Figure 7.9: Examples for the four cases of mappings

separate “cases” is misleading, however, since the algorithm for deciding which
mappings are licensed is the same in every case.



Chapter 8

Topological Parsing

T8.1 Introduction

Topological Grammar Compiler (TGC) is a tool for compiling topological gram-
mars into Prolog code. The grammar should comply by the specifications for-
mulated in Penn and Haji-Abdolhosseini (2002). The output of the compiler is a
parser in Prolog and is based on the grammatical rules and the lexicon provided
in the input file. There are however several differences between the specifications
in Penn and Haji-Abdolhosseini (2002) and what TGC assumes. These differences
are described in pertinent sections throughout this guide.

T8.2 Running TGC

TGC runs on any computer that has SICStus Prolog version 3.8.7 or higher in-
stalled. The compiler also requires the file header.pl. The parsed code needs
the file tree.pl for pretty-printing. These files are included in the TGC pack-
age, which also contains two sample grammar files—german.pl (for German) and
sc.pl (for Croatian/Serbian)—as well as two files containing some test sentences
for those grammars.

T8.2.1 Compiling Grammars

To run TGC, make sure that the working directory of SICStus Prolog is set to where
TGC files reside and then type

| ?- compile(tgc).

at the prompt. The command topo compile/2 is used to create a file that con-
tains parser code based on an existing grammar file. For example, assuming that
the grammar file german.pl exists in the working directory, you may generate the
corresponding compiled code for that and keep it in a file called german c.pl by
typing the following command:

| ?- topo_compile('german.pl','german_c.pl').

T64-1



T64-2 CHAPTER 8. TOPOLOGICAL PARSING

Note that if you wish to use file extensions, you need to put the file name inside
single quotes. This version of the compiler does not add .pl to the end of file
names.

During compilation several messages are shown on the screen to inform the
user of the states that the program enters or completes. During a normal compi-
lation you should see messages similar to the following:

| ?- topo_compile('german.pl','german_c.pl').

Analyzing german.pl...

Compiling german.pl. Output to be written in german_c.pl...

Compilation complete.

yes

| ?-

In cases of errors or potential problems, warnings and/or error messages may
appear at each state. These will be discussed in the following sections in detail.

T8.2.2 Using the Parser

You can load the generated parser code into the machine using Prolog’s
compile/1 command. Parsing is done with the command rec/1, which takes a
list of input words in lowercase letters. For example, to parse the sentence ‘Der
mann lauft’, type:

| ?- rec([der,mann,lauft]).

The output is a tree diagram for every parse that encompasses the whole input
string. For the case of the example above, the output looks like this:

| ?- rec([der,mann,lauft]).

s

|_np

| |_det

| | |_der

| |_nbar

| |_n

| |_mann

|_vp

|_vbar

|_iv

|_lauft

yes

| ?-
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Should the input string yield no such parse, the compiler returns the message:
No full parseand fails. Similarly, in case the parser encounters an unrecognised
word, it also notifies the user by an error message and fails. Some examples are
presented below:

| ?- rec([der,mann,will,jochen,sehe]).

No full parse.

no

| ?- rec([der,mann,will,jochen,sehrn]).

Can't recognise the word sehrn.

no

| ?-

Another command, time/2 is used to measure the time that it takes to fully
process an input string. The number returned shows the processing time in mil-
liseconds. Because this command only measures processing time and does not
check for full parses and also because it does not draw any parse trees, you should
first make sure that the input string parses using rec/1. An example of time/2 in
use is given below:

| ?- time([der,mann,sieht,jochen],T).

T = 10 ?

yes

| ?-

T8.3 Grammars

T8.3.1 Phenogrammatical Rules

Phenogrammatical rules (pheno-rules) are represented with the infix operator,
topo/2 in a grammar file. The left-hand side of the operator represents a region
and the right-hand side a list of the topological field descriptors for the fields in-
side the region in order from left to right. The syntax of topo/2 is as follows:

<topo-rule> ::= <region> topo <field-descriptor-list>

<region> is the name of the region and must be a Prolog atom.
<field-descriptor-list> is a list of field descriptors formulated in Penn and
Haji-Abdolhosseini (2002). Field names also have to be Prolog atoms.

The following example shows two rules for clause region in German. As in
Prolog, these are interpreted disjunctively. Therefore, what the following two
rules together mean is that all clause regions in German either have the first
topology or the second.
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clause topo [vf, cf, mf*, {vc}, {nf}].

clause topo [ cf, mf+, vc , {nf}].

Recall that ‘*’ describes zero or more fields, ‘+’ at least one field and ‘fg’ op-
tional fields. A bare field name represents a single obligatory field. According to
the first rule above, then, a clause region consists of a single vf, one cf, zero or
more mf’s, an optional vc and an optional nf, and these fields are arranged in the
same order as in the list. Note that as in Prolog, every predicate ends in a period.

Two other pheno-rules have been defined in the file german.pl:

npr topo [sprf, adjf*, nof, postf*].

ppr topo [pf, objf].

The first describes the topology of a noun-phrase region and the second that
of a prepositional-phrase region.

Note that all pheno-rules must at least be binary branching. If this is not the
case an exception is raised at compile time. In addition, the same field name
cannot be used ambiguously for more than one region. Ambiguous field names
also result in an exception being raised.

A condition implicit in all topo rules is that a region must at least span over
one word. Thus, in the following rule:

r1 topo [{f1},{f2},{f3}].

although all the daughter fields of r1 are optional, we will not have any zero-
length r1’s in the chart during parsing. An r1 is introduced in the chart only if
it spans at least one word.

T8.3.2 Linkage

The relationships among various regions are described with linkage constraints.
These license links in a pheno-tree with field mothers and region daughters. The
syntax for these constraints is as follows:

<linking-rule> ::= <region> <<-- <field>

| <region> <<-- (<fields>)

| <field> -->> <region>

| <field> -->> (<regions>)

<field> ::= <prolog-atom>

| matrix

<region> ::= <prolog-atom>

<fields> ::= <field>

| <fields> ; <fields>

<regions> ::= <region>

| <regions> ; <regions>
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These constraints are universally quantified on the left-hand side and exis-
tentially quantified on the right-hand side. Therefore, only one such constraint
can be declared for each field or region. If more than one linkage constraint is
given for a field/region, a warning message is displayed and only the last one is
considered.

In a grammar file, we use the two infix operators <<--/2 and -->>/2 for link-
age rules with regions or fields on the left-hand side respectively. Disjunction on
the right-hand side is shown by semicolons (;). Therefore, to show that an npr

may fit into vf, mf, objf or nf, we can use the following declaration. Note that
the parentheses around the disjuncts are required. The special field, matrix is
discussed in section T8.3.6.

npr <<-- (vf; mf; objf; nf).

If both <<--/2 and -->>/2 are needed in a single grammar file, care must be
exercised that the two declarations not contradict each other. For example, the
following two linkage declarations are inconsistent:

r1 <<-- (f1; f2; f3).

f4 -->> (r1; r2; r3).

The first constraint states that all r1 regions can only be linked to either an f1,
f2 or f3 and nothing else. The second constraint, on the other hand, states that
all f4 fields can only be linked to either r1, r2 or r3 and nothing else. According to
the first constraint, however, r1 cannot be linked to f4. To resolve this inconsis-
tency, we should either add f4 to the first constraint, or delete r1 from the second
as appropriate. Therefore, both of the following sets of constraints are logically
sound:

r1 <<-- (f1; f2; f3; f4).

f4 -->> (r1; r2; r3).

or

r1 <<-- (f1; f2; f3).

f4 -->> (r2; r3).

T8.3.3 Matching

matches/2

The first set of constraints that connect tectogrammar with phenogrammar is the
set of matches constraints. These constraints say what tectogrammatical cate-
gories match in their yields with what phenogrammatical categories. The parser
uses these constraints to find what field or region in the phenogrammar each lex-
ical category matches. Therefore,these constraints are crucial to the proper oper-
ation of the system. The matches constraints have the following syntax:
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<matches-rule> ::= <phi> matches <field-or-region>

| <phi> matches (<fields-or-regions>)

| (<phi> matches <field-or-region>) :- <prolog-goals>

<phi> ::= <prolog-atom>

| <prolog-variable>

<field-or-region> ::= <field>

| <region>

<fields-or-regions> ::= <field-or-region>

| <fields-or-regions> ; <fields-or-regions>

<phi> stands for any tectogrammatical category. In this version, TGC assumes
tectogrammatical categories to be either atomic types (e.g. adv, s or aux) or de-
scriptions (e.g. (n,gender:G, case:C) or (np,person:P, number:N, gender:G,

case:C)). The following are, therefore, well-formed matches declarations:

adv matches mf.

marker matches cf.

Assuming that we consider type n to have two appropriate features NUMBER and
GENDER, then we may have the following matches declaration to mean that a first
person, neuter noun matches a ‘noun field’ (nof).

(n,number:first,gender:neuter) matches nof.

As noted above, the right-hand side of these rules may contain a disjunction of
fields or regions; therefore, to state that a proper noun (pn) matches an mf, vf or
objf, the following declaration is used:

pn matches (mf; vf; objf).

Again, note that the parentheses are required around the disjuncts.
Sometimes, it is necessary to have a condition specified for the matches con-

straints. For example, in the Croatian and Serbian language, a third person singu-
lar present tense auxiliary verb (je) has its own field, jef, and any other auxiliary
verb matches an auxf. We represent these constraints as follows:

((aux,person:third,number:sg,tense:pres) matches jef):- !.

aux matches auxf.

What we have done here is place a matches constraint inside the head of a Prolog
conditional clause. The body of the rule is normal Prolog code. In the above
example, the cut (!) prevents je from matching auxf as well as jef.

This strategy of placing a grammatical constraint inside the head of a Prolog
conditional only works for matches/2 and lexical entries (--->/2 to be discussed
in section T8.4 below). The conditional matches rules are placed before the un-
conditional ones in the compiled file. It should be kept in mind that disjunction
is not allowed in conditional matches constraints.

Universal matches rules for non-lexical categories enforce the requirement
that all tectogrammatical categories that can unify with <phi> should always
match a topologically accessible <field-or-region>.
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matched by/2

The syntax of matched by constraints is as follows:

<matched-by-rule> ::= <field-or-region> matched_by <phi>

| <field-or-region> matched_by (<phis>)

<phis> ::= <phi>

| <phis> ; <phis>

These constraints are responsible for predicting tectogrammatical categories
(top-down) once the parser has found certain regions or fields. Because they
block topological accessibility to higher nodes in the tecto-tree, matched by con-
straints create inseparable structures that make parsing more efficient. It is,
therefore, prudent to try to introduce as many different types of such constraints
as possible in addition to clause-level categories. In German, for instance, one
can have both of the following constraints at the same time in a single grammar:

clause matched_by (s; rp; cp).

ppr matched_by pp.

Once a clause region is found during pheno-parse, the first constraint results
in a top-down tecto-parse in search for an S, RP or CP. The second constraint
has the same effect only at the level of PP. The advantage of having the second
constraint is that the internal structure of PP’s in this case will remain inaccessible
to higher nodes and therefore, no active edge higher up in the tree will try to steal
the NP or NP’s inside PP’s, which results in a more efficient parse.

As shown in the previous example, disjunction of tecto-categories on the
right-hand side of matched by constraints is also acceptable. As usual, the paren-
theses around the disjuncts are required.

Because, matched by constraints have universal quantification on their right-
hand side, only one such constraint is allowed in each grammar for a field or re-
gion. In case more than one matched by constraint is specified for a field/region,
a warning message is issued and only the last one gets considered.

<==>/2

A shorthand for

phi matches f,

f matched_by phi

is phi <==> f. Note that no disjunction is allowed on either side of <==>/2. The
syntax of <==>/2 is as follows:

<bidirectional-matching> ::= <phi> <==> <field-or-region>
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T8.3.4 Covering

covers/2

Global covers declarations have the following syntax:

<covers-rule> ::= <phi> covers <field-or-region>

| <phi> covers (<fields-or-regions>)

These constraints state that the yield of all <phi> must include all of
<field-or-region>. As usual, disjunction is represented with semicolons (;) and
parentheses are required around disjuncts.

covered by/2

The syntax of covered by/2 (presented below) is almost identical to that of
matched by/2. It also has similar semantics. The only difference is that
covered by constraints require all <field-or-region> (declared on the left-hand
side) be consumed by some <phi> (declared on the right-hand side), but <phi>
may be larger in its yield than <field-or-region>.

<covered-by-rule> ::= <field-or-region> covered_by <phi>

| <field-or-region> covered_by (<phis>)

<field-or-region> ::= <field>

| <region>

<phis> ::= <phi> ; <phis>

It should be noted that covered by constraints are the least efficient of con-
straints and grammar writers should try to avoid them by using other more effi-
cient means such as covers constraints, structure-sharing, precedence or imme-
diate precedence constraints etc.

Just as matched by, covered by constraints are also universally quantified on
the left-hand side. Therefore, if more than one such constraint is declared for a
given field or region, a warning message is issued and the last one gets considered.

<-->/2

The operator <--> in covering is the counterpart of <==> in matching. Therefore,

phi <--> f.

is equivalent to

phi covers f.

f covered_by phi.

Note that no disjunction is allowed in either side of <-->/2. The syntax of <-->/2
is provided below:

<bidirectional-covering> ::= <phi> <--> <field-or-region>
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T8.3.5 Compaction

Compaction applies to tectogrammatical categories and states that the elements
in the list that is its argument be contiguous strings. As a global constraint, com-
paction applies this condition to all categories that are consistent with any of the
elements in the argument list of the constraint.

<compaction-rule> ::= compacts(<phi-list>)

In a grammar file, the predicate compacts/1 is used to show compaction. The
argument of compacts/1 is a list of tectogrammatical categories. For example, in
order to show that all NP’s in a language are contiguous, we can use the following
global constraint:

compacts([np]).

There can only be one global compacts/1 declaration in the grammar. Should
there be more than one, a warning message is issued and the last one gets con-
sidered. Also note that the argument of compacts/1 must be a list. A non-list
argument generates an error.

T8.3.6 matrix

A special type of field that is recognised by TGC is matrix, which must always be
maximal in a grammar (i.e. not linked to any higher fields or regions) and it must
span over the whole input string. By using matrix, a grammar writer may delay
prediction of sentences until such time that the whole input sentence has been
pheno-parsed. An example of using matrix follows:

clause topo [vf, cf, mf*, {vc}, {nf}].

clause topo [ cf, mf+, vc , {nf}].

clause <<-- (nf;matrix).

matrix matched_by us.

According to the mini-phenogrammar above, the clause region is linked to nf

and matrix. The fact that only matrix is in charge of predicting an unembedded
sentence (US) delays tecto-parsing until all the input sentence has been pheno-
parsed and this is because no matrix is introduced to the chart until the clause

that links to it consumes the whole input string.

T8.3.7 Tectogrammatical Rules

The tectogrammatical rules that TGC uses resemble phrase-structure rules in ear-
lier generative grammars except that the rules do not assume order or contiguity
in any way. The operator for tecto-rules is *-->/2. The syntax of tecto-rules is
defined below:
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<tecto-rule> ::= <phi> *--> [<phi-conj>]

| <phi> *--> [<phi-conj>, {<conditions>}]

<phi> ::= <description>

| <prolog-variable>

<phi-conj> ::= <phi>

| <phi-conj>, <phi-conj>

<conditions> ::= <condition>

| (<conditions>, <conditions>)

| (<conditions>; <conditions>)

<condition> ::= <local-covers>

| <local-matches>

| <precedence>

| <immediate-precedence>

| <local-compaction>

| <inequation>

The category on the left-hand side of a tecto-rule represents the mother node,
and the daughters are provided (in no particular order) on the right-hand side.
The daughters should be separated by commas. It should be noted that TGC as-
sumes no empty categories.

As is suggested in the BNF above, one may provide some conditions for the
applicability of a tecto-rule much in the same manner as DCG’s. The conditions
are separated from the rule by fg, which appear at the very end of the rule. The
acceptable conditions are local covering, local matching, precedence, immediate
precedence, local compaction and inequations or other Prolog goals. The follow-
ing subsections discuss various types of conditions that are allowed in tecto-rules.

Local Covering

As well as global covering constraints, one can state covers/2 constraints locally
inside tecto-rules. The scope of local constraints does not surpass the tecto-rule
in which they are used. The syntax of local covering is as follows:

<local-covers> ::= <non-zero-index> covers <field-or-region>

Disjunction is not allowed on the right-hand-side of local covers constraints.
The <non-zero-index> stands for a non-zero integer that ranges from 1 to the
number of daughters in the applicable tecto-rule. Therefore, the following hypo-
thetical rule is syntactically acceptable:

pp *--> [(p,case:C), (nbar,case:C),

{2 covers npr}].

What the above rule says is that a PP consists of a P and an NBar that shares its
CASE feature with P and that the second daughter in the rule, namely, NBar covers
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an npr. In this context the field or region specified will be one that is topologically
accessible to the sponsor of the mother node. Therefore, the npr in the above
example has to be topologically accessible to the pheno-edge that resulted in the
prediction of that PP.

Local Matching

Local matching is a special case of local covering. The only difference is that in
matching the daughter covering the region cannot be larger than it. The syntax of
local matching is provided below:

<local-matches> ::= <non-zero-index> matches <field-or-region>

An example of a local matches constraint in German grammar is:

(nbar, person:P, number:N, gender:G, case:C) *-->

[(nbar, person:P, number:N, gender:G, case:C), rp,

{ 2 matches nf

; 2 matches postf

}].

This rule states that an NBar consists of another NBar with the same PERSON,
NUMBER, GENDER and CASE features as well as an RP, which matches either an nf

or postf that is accessible to the sponsor of the mother NBar.

Precedence

Precedence constraints have this syntax:

<precedence> ::= <non-zero-index> < <non-zero-index>

What they mean is that the daughter whose index is mentioned on the left-hand
side must be entirely located before the daughter whose index is on the right-
hand side. Note that this constraint does not make any assumptions about the
contiguity of the daughters. As an example, one can provide the following hypo-
thetical rule that states an NP consists of a determiner that precedes but might
not be adjacent to an NBar with the same agreement features.

(np, person:P, number:N, gender:G, case:C) *-->

[(det, number:N, gender:G, caes:C),

(nbar, person:P, number:N, gender:G, case:C),

{1 < 2}].

Immediate Precedence

A special kind of precedence is immediate precedence, which means that the two
daughters mentioned in the constraint have to be adjacent to one another. This
only applies to the rightmost word of the first daughter specified in the constraint
and the leftmost word of the second one. This constraint does not assume conti-
guity of daughters either. The syntax of an immediate precedence constraint is as
follows:
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<immediate-precedence> ::= <non-zero-index> << <non-zero-index>

The following serves as an example for this and means that an NP consists of
a determiner which is immediately followed by an NBar.

(np, person:P, number:N, gender:G, case:C) *-->

[(det, number:N, gender:G, case:C),

(nbar, person:P, number:N, gender:G, case:C),

{1 << 2}].

Local Compaction

As is clear from the name of the constraint, a local compaction constraint states
that a daughter or the mother node in a rule is a contiguous string. Obviously,
you do not need to specify that for lexical categories that are by definition one
word long and therefore contiguous. The syntax of local compaction constraints
is given below:

<local-compaction> ::= compacts(<index>)

The variable <index> stands for any integer from 0 to the number of the
daughters in the tecto-rule in which the constraint appears. If <index> is set to
zero, it means that the mother node should be a contiguous string. For example:

(np, person:P, number:N, gender:G, case:C) *-->

[(det, number:N, gender:G, case:C),

(nbar, person:P, number:N, gender:G, case:C),

{compacts(0)}].

means that an NP consists of a determiner and an NBar and that the mother NP
is contiguous.

Note that the argument of a local compaction constraint is not a list but a
single index.

Inequations and Other Prolog Goals

Sometimes it is necessary to make sure that certain features do not have certain
values and sometimes one may need to manipulate symbols or make sure that
some other constraints apply. In such cases, it is possible to embed some Prolog
code inside the tecto-rules as in DCG’s. For example, if you want to make sure
that a tenseless verb is not combined with an NP to make a sentence, you can use
the following tecto-rule:

s *--> [(np, person:P, number:N, case:nom),

(vp, person:P, number:N, form:F),

{ get_type(F,FType),

FType\==inf,

FType\==pastp,

FType\==presp

}].
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This rule states that a sentence contains an NP and a VP who share the same
person and number features and that the form of the verb (F) is not infinitival,
past-participial or present-participial.

T8.4 The Lexicon

Lexical entries are introduced using the infix operator --->/2. The syntax of a
lexical entry is as follows:

<lexical-entry> ::= <entry>

| <morph-rule>

<entry> ::= <lexical-item> ---> <tecto-category>

<morph-rule> ::= (<entry>) :- <prolog-goals>

<lexical-item> ::= <prolog-atom>

| <prolog-variable>

A <lexical-item> should be either a Prolog atom or variable. A
<tecto-category> is either a description or variable. An <entry> can be
placed in the head of a Prolog conditional clause to define morphological
processes. The following examples of lexical entries are from the file german.pl:

will ---> (aux,form:inf).

(sieht ---> (tv,person:third,number:sg,form:pres)):- !.

For more examples, refer to the files german.pl and sc.pl.

T8.4.1 Lexical Categories

Because the lexicon as defined here is not static and may encode morphological
processes, it is an unreliable source of information for inducing lexical categories.
TGC, therefore, uses the tecto-rules for this purpose. Any category is considered
lexical if no category corresponding to that category appears in the left-hand side
of the tecto-rules. In the following example, Aux, Pron and TV are thus considered
lexical:

s *--> [(np, person:P, number,N, case:nom),

(vp, person:P, number:N)].

s *--> [(np, person:P, number:N, case:nom),

(aux, person:P, number:N, form:F),

(vp, person:no,number:no,form:F)].

(np, person:P, number:N, gender:G, case:C) *-->

[(pron, person:P, number:N, gender:G, case:C)].
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(vp, person:P, number:N, form:F) *-->

[(vbar, person:P, number:N, form:F)].

(vbar, person:P, number:N, form:F) *-->

[(tv, person:P, number:N, form:F),

(np, case:acc)].

T8.5 Edges

A TGC-generated parser uses four types of edges: pheno-edge, tecto-aedge, tecto-
pedge and tecto-fedge. A pheno-edge is a passive edge corresponding to a found
phenogrammatical category. Pheno-edges look like the following in the parser:

pheno_edge(L,R,FR,Id)

L and R are for the left and right boundaries of the edge. FR records the field or
region found, and Id is the unique ID that each pheno-edge has.

Tecto-aedges are active edges that are predicted either from phenogrammar
as a result of a matched by constraint or predicted in tectogrammar according to
some tecto-rule. They hold the following information:

tecto_aedge(Cat,Sponsor,Keys,CanBV,OptBV)

Cat is the category predicted. Sponsor is the ID of the pheno-edge that resulted in
the prediction of the active edge. Keys is a list of ID’s that belong to inaccessible
passive or frozen edges. Taking a key by an active edge means that the active edge
has promised to consume all of the daughters of the edge it has taken its keys/ID’s
from. This is done by adjusting the CanBV and OptBV of the active edge. These
respectively stand for a bit vector representing the words that an edge is allowed
to take and the words that it may optionally take.

A passive tecto edge (tecto-pedge) records a category that has been found and
it contains the following:

tecto_pedge(Cat,Tree,Keys,DtrIds,BV)

Cat is the category that has been found. Tree represents the internal structure of
the category. DtrIds is a list of the ID’s of the lexical items that a passive edge has
consumed. And finally, BV represents the positions of the words consumed by the
passive edge as a bit vector.

Frozen edges (tecto-fedge) are introduced by covered by constraints if any.
These are basically active edges that are waiting for a CanBV. The format of a tecto-
fedge is as follows:

tecto_fedge(Cat,Id,ReqBV)

Cat is the category predicted. Id is the ID of the pheno-edge that resulted in the
prediction of the frozen edge. ReqBV is the bit vector that is required to be con-
sumed for Cat to be made. A frozen edge is unfrozen by an active edge that has
access to it.
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For more information on the formalism and the working mechanism of a
TGC-generated topological parser, refer to Penn and Haji-Abdolhosseini (2002).
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Appendix

T0.1 Syntax of A Topological Grammar

<bidirectional-covering> ::= <phi> <--> <field-or-region>

<bidirectional-matching> ::= <phi> <==> <field-or-region>

<compaction-rule> ::= compacts(<phi-list>)

<condition> ::= <local-covers>

| <local-matches>

| <precedence>

| <immediate-precedence>

| <local-compaction>

| <inequation>

<conditions> ::= <condition>

| (<conditions>, <conditions>)

| (<conditions>; <conditions>)

<covered-by-rule> ::= <field-or-region> covered_by <phi>

| <field-or-region> covered_by (<phis>)

<covers-rule> ::= <phi> covers <field-or-region>

| <phi> covers (<fields-or-regions>)

<entry> ::= <lexical-item> ---> <tecto-category>

<field> ::= <prolog-atom>

| matrix

<field-or-region> ::= <field>

| <region>

<fields-or-regions> ::= <field-or-region>

| <fields-or-regions> ; <fields-or-regions>

<fields> ::= <field>

| <fields> ; <fields>

<immediate-precedence> ::= <non-zero-index> << <non-zero-index>

<lexical-entry> ::= <entry>

| <morph-rule>

<lexical-item> ::= <prolog-atom>
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| <prolog-variable>

<linking-rule> ::= <region> <<-- <field>

| <region> <<-- (<fields>)

| <field> -->> <region>

| <field> -->> (<regions>)

<local-compaction> ::= compacts(<index>)

<local-covers> ::= <non-zero-index> covers <field-or-region>

<local-matches> ::= <non-zero-index> matches <field-or-region>

<matched-by-rule> ::= <field-or-region> matched_by <phi>

| <field-or-region> matched_by (<phis>)

<matches-rule> ::= <phi> matches <field-or-region>

| <phi> matches (<fields-or-regions>)

| (<phi> matches <field-or-region>) :- <prolog-goals>

<morph-rule> ::= (<entry>) :- <prolog-goals>

<phi> ::= <prolog-atom>

| <prolog-variable>

<phi-conj> ::= <phi>

| <phi-conj>, <phi-conj>

<phis> ::= <phi>

| <phis> ; <phis>

<precedence> ::= <non-zero-index> < <non-zero-index>

<region> ::= <prolog-atom>

<regions> ::= <region>

| <regions> ; <regions>

<tecto-rule> ::= <phi> *--> [<phi-conj>]

| <phi> *--> [<phi-conj>, {<conditions>}]

<topo-rule> ::= <region> topo <field-descriptor-list>
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T0.2 TGC Error and Warning Messages

Ambiguous field name(s) FieldNames in R1 and R2

R1 and R2 share the field(s) in the list FieldNames

Argument of compacts/2 not a list in compacts(Phi)

The argument a global compacts/1 constraint, Phi is not a list.

covered_by illigally used in rule Rule

A covered by/2 constraint has been used locally in rule Rule.

Disjoined field names in conditional matches/2 for Phi matches Field

Field in a conditional matches/2 constraint is a disjunction of field
names.

Inconsistent linking rules for F and R

Linking rules -->>/2 and <<--/2 for field F and region R violate the
universal quantification condition of the rules.

Index not in range in Constraint constraint in Rule

The index used in Constraint in tecto-rule Rule is not in the valid
range.

Index not integer in Constraint constraint in Rule

The index used in Constraint in tecto-rule Rule is not an integer.

Matched_by illigally used in rule Rule

A matched by/2 constraint has been used locally in rule Rule.

Matrix not maximal in F -->> R

The linkage rule F -->> R renders matrix non-maximal.

Matrix not maximal in R <<-- F

The linkage rule R <<-- F renders matrix non-maximal.

Multiple Constraint declarations for X

More than one global constraint Constraint has been found for X.
Only the last instance is considered.

No fields specified in topo rule: R topo []
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The right-hand side of a topo rule for R is an empty list.

No linking rules in pheno-grammar

No linking rules (<<--/2 or -->>/2) were found in the grammar.

No matched_by rules. The parser will not tecto-parse.

The matched by rules are responsible for predicting tectogrammatical
categories. Without them tecto-parsing is not possible.

Unary-branching topo rule: TopoRule

All topo rules must be at least binary branching. Use linkage rules in-
stead.



Appendix A

Compiling ALE Programs

This section is devoted to showing how ALE programs can actually be compiled.
ALE was developed to be run with a Prolog compiler, such as SICStus Prolog’s. An
SWI port of ALE is available, which also has a less extensive compilation phase. We
strongly recommend SICStus Prolog. SWI Prolog does not scale up well to large-
sized grammars. The local systems administrator should be able to provide help
on running Prolog. This documentation only assumes the user has figured out
how to run Prolog as well as write and edit files. It is otherwise self-contained.

1.1 File Management

After starting up Prolog, the following command should be used to load the ALE

system:

| ?- compile(AleFile).

where AleFile is an atom specifying the file name in which ALE re-
sides. For instance, in Unix, you might need to use something like:
compile('/users/carp/Prolog/ALE/ale.pl')., or a local abbreviation for it like
compile(ale). if the system is in a file named ale.pl in the local directory (SIC-
Stus and SWI can fill in the “.pl” suffix). With SWI Prolog, the command:

| ?- consult(AleFile).

must be used instead. Note that the argument to compilemust be an atom, which
means it should be single-quoted if it is not otherwise an atom. After the system
has compiled, you should see another Prolog prompt. It is necessary to have write
permission in the directory from which Prolog is invoked, because ALE creates
files during compilation. But note that neither the grammar nor ALE need to be
locally defined; it is only necessary to have local write permission.

ALE source code, being a kind of Prolog code, must be organized so that predi-
cate definitions are not spread across files, unless the appropriate multifiledec-
larations are made. For instance, the sub/intro clauses specifying the type hier-
archy must all be in one file. Similarly, the definite clauses must all be in one file,
as must the grammar rules and macros.

65
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1.2 Compiling Programs

ALE can compile a program incrementally to some extent. In particular, the com-
piler is broken down into six primary components for compiling the type hierar-
chy, functional descriptions, type constraints, the attribute-value logic, the def-
inite clauses and the grammar. Compiling the type hierarchy consists of com-
piling type subsumption, type unification, appropriateness specifications, and
extensionality information. The logic compiler compiles predicates which know
how to add a type to a feature structure, how to find a feature value in a type and
how to perform feature structure unification, as well as the most general satis-
fiers of every type, with code attached to enforce cons/2 constraints. Compiling
the grammar consists of compiling the lexicon, empty categories, rules and lexi-
cal rules, and if compilation for generation is enabled, the semantics/1 directive.
Macros are not compiled, but are rather interpreted during compilation.

There is one predicate compile gram/1 that can be used to compile a whole
ALE grammar from one file, as follows:

| ?- compile gram(GramFile).

where GramFile is the name of the file in which the grammar resides. The com-
piler will display error messages to the screen when it is compiling. But since ALE

uses the Prolog compiler to read the files, Prolog might also complain about syn-
tax errors in specifying the files. In either case, there should be some indication
of what the error is and which clause of the file contained it.

ALE’s compiler creates code for parsing, generation, or both. As of the present
version of ALE, only one grammar can be used, even if code for both modes is to be
created. Two files, ale parse.pl and ale gen.pl, are included with the distribu-
tion, which provide some example glue code to link together two ALE processes
running under SICStus Prolog 3.0 or higher in order to parse and generate with
two different grammars.

At startup, ALE produces code only for parsing. To produce code for genera-
tion only, use the command:

| ?- generate.

compiler will produce code for generation only

yes

| ?-

To produce code for both parsing and generation, use parse and gen instead. To
switch back to producing code for parsing only, use parse. Note that these com-
mands modify the behaviour of the compiler, not the compiled code, so gram-
mars may need to be recompiled after these directives are issued.

The following predicates are available to compile grammars and their com-
ponent parts. They are listed hierarchically, with each command calling all those
listed under it. Each higher-level command is nothing more than the combina-
tion of those commands below it.
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Command Requires File Mode Clause

-------------------------------------------------------------------

compile_gram nothing * both

compile_sig nothing * both

compile_sub_type nothing * sub

compile_unify_type compile_sub_type

compile_approp compile_unify_type * intro

compile_extensional compile_approp * ext

compile_fun compile_sig * both +++>

compile_cons compile_fun * both cons

compile_logic compile_sig both

compile_mgsat compile_sig

compile_add_to_type compile_sig

compile_featval compile_add_to_type

compile_u compile_sig

compile_subsume compile_sig parse/subtest

compile_dcs compile_logic * both if

compile_grammar compile_logic *

compile_lex_rules compile_logic * parse **>

compile_lex compile_logic * parse --->

compile_rules compile_logic * parse ===>,empty

compile_logic * gen ===>,empty

--->,**>

compile_generate compile_rules * gen semantics

The table above lists which compilations must have already been compiled be-
fore the next stage of compilation can begin. Thus before compile grammar

can be called, compile logic must be called (or equivalently, the sequence of
compile mgsat, compile add to type, compile featval, and compile u). Each
command with an asterisk in its clauses column in the above table may be given
an optional file argument. The file argument should be an atom which specifies
the file in which the relevant clauses can be found. The clauses needed before
each stage of compilation can begin are listed to the right of the asterisks. For
instance, the if clauses must be loaded before compile dcs is called. But note
that compile unify type does not require any clauses to be loaded, as it uses the
compiled definition of sub type rather than the user specification in its opera-
tion. Thus changes to the signature in the source file, even if the source file is
recompiled, will not be reflected in compile unify type if they have not been re-
compiled by compile sub type first. If an attempt is made to compile a part of a
program where the relevant clauses have not been asserted, an error will result.

Note that compile subsume only compiles code if subsumption checking
(p. 93) and parsing have been enabled.

Each of the lowest level commands generates intermediate Prolog source code
for that function, which is then compiled further by a Prolog compiler. ALE uses a
term-expansion-based compiler in both SICStus and SWI Prologs that avoids the
necessity for creating intermediate files. It also improves the speed of intermedi-
ate code compilation. Because both SICStus and SWI Prologs require the user to
read a file on disk in order to use their compilers, ALE must create a zero-byte file
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called .alec throw to throw control to its intermediate code compiler. For that
reason, the Prolog process must have write permission in the local directory to
create this file, if it does not already exist.

After a grammar is compiled, the system plus grammar code can be saved with
the command:

| ?- save program(File).

This will save the state of the Prolog database in File. SICStus users should nor-
mally use this rather than save/1, which creates a larger file by saving other in-
formation like the state of Prolog’s internal stacks. The SWI Prolog command is
qsave program(File). With either Prolog, the state can be reloaded, by executing
the saved file directly.

In general, whenever the ALE source program is changed, it should be
recompiled from the point of change. For instance, if the definite clauses
are the only thing that have changed since the last compilation, then only
compile dcs(FileSpec) needs to be run. But if in changing the definite clauses,
the type hierarchy had to be changed, then everything must be recompiled.

ALE treats lexicon compilation differently than the other stages. Two com-
mands, lex compile/0 and lex consult/0, control whether the intermediate
code for the lexicon and empty categories is compiled or consulted (a lesser de-
gree of compilation). Lexicon compilation is usually the most time-consuming
stage of grammar compilation in ALE, and consulting the code for this stage can
result in a substantial compile-time speed-up. The decrease in run-time perfor-
mance is only significant in grammars with a high degree of lexical ambiguity,
i.e., where one string has a very large number of entries in the lexicon. By default,
ALE consults the code for the lexicon. In SWI Prolog, only lexicon consulting is
available.

When consulting is chosen, the lexicon and empty categories are also con-
sulted dynamically. This means that individual entries can be retracted and
added without recompiling the entire lexicon. To retract a lexical entry, use the
command:

| ?- retract lex(LexSpec).

LexSpec can either be a word, or a list of words. The words given to retract lex/1

are not closed under morph rules — derived entries with different forms must
be retracted explicitly. retract lex/1 iterates through all of the entries that
match the given word(s), asking for each one whether it should be retracted.
retractall lex/1 will remove all of them without asking.

To add lexical entries, use the command:

| ?- update lex(UpdateFile).

UpdateFile is a file containing new lexical entries and empty categories. New lex-
ical entries are closed under lexical rules, as usual.1

1Earlier versions of ALE also permitted incremental updating and retraction of empty categories.
Because empty categories are now closed under phrase structure rules at compile-time, this is no
longer possible.
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1.3 Compile-Time Error Messages

There are three sources of compile-time messages generated by ALE: Prolog mes-
sages, ALE errors, and ALE warnings.

ALE uses Prolog term input and output, thus requiring the input to be speci-
fied as a valid Prolog program. Of course, any ALE program meeting the ALE syn-
tax specification will not cause Prolog errors. If there is a Prolog error generated,
there is a corresponding bug in the grammar file(s). Prolog error messages usually
generate a message indicating what kind of error it found, and just as importantly,
which line(s) of the input the error was found in. The most common Prolog error
messages concern missing periods or operators which cannot be parsed. Such
errors are usually caused by bad punctuation such as missing periods, misplaced
commas, commas before semicolons in disjunctions, etc. These errors are usually
easy to track down.

Prolog also generates warnings in some circumstances. In particular, if you
only use a variable once in a definition, it will report a singleton variable warn-
ing. The reason for this is that variables that only occur once are useless in that
they do not enforce any structure sharing. There is little use for singleton vari-
ables in ALE outside of the Prolog goals in morphological rules and some macro
parameters. Usually a singleton variable indicates a typing error, such as typing
AgrNum in one location and Agrnum in another. It is standard Prolog practice to re-
place all singleton variables with anonymous variables. An anonymous variable
is a variable which begins with the underscore character. For instance, a single-
ton variable such as Head can be replaced with the anonymous variable Head, or
even just , to suppress such singleton variable warnings. Two occurrences of the
simple anonymous variable are not taken to be co-referential, but two occur-
rences of something like Head are taken to be co-referential. In particular, the
two descriptions, (foo:X, bar:X) and (foo: X, bar: X) are equivalent to each
other, but distinct from (foo: ,bar: ) in that the latter description does not indi-
cate any structure sharing. The second description above is considered bad style,
though, as it uses the anonymous variable X co-referentially.

Besides Prolog syntax errors, there are many errors that ALE is able to detect at
compile time. These errors will be flagged during compilation. Most errors give
some indication of the program clause in which they are found. Some errors may
be serious enough to halt compilation before it is finished. In general, it is a good
idea to fix all of the errors before trying to run a program, as the error messages
only report serious bugs in the code, such as type mismatches, unspecified types,
ill-formed rules, etc.

In certain cases, it is preferable to disable those error messages concerned
with ALE’s inability to add incompatible descriptions to a feature structure. This
is especially true during lexicon and empty category compilation, when, due to
the interaction of disjunctions and type constraints, the number of such errors
can be overwhelming. In the current version of ALE, these errors are automatically
disabled during lexicon and empty category compilation, and enabled otherwise.
Commands will be added to future versions so that the user may control when
these errors should be displayed.

Less serious problems are flagged with warning messages. Warning messages
do not indicate an error, but may indicate an omission or less than optimal ALE
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programming style.
The ALE error and warning messages are listed in an appendix at the end of

this report, along with an explanation. The manual for the Prolog in which ALE is
being run in will probably list the kinds of errors generated by the Prolog compiler.
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Running and Debugging ALE
Programs

After the ALE program compiles without any error messages, it is possible to test
the program to make sure it does what it is supposed to. We consider the problem
from the bottom-up, as this is the best way to proceed in testing grammars. ALE

does not have a sophisticated input/output package, and thus all ALE procedures
must be accessed through Prolog queries.

2.1 Testing the Signature

Once the signature is compiled, it is possible to test the results of the compilation.
To test whether or not a type exists, use the following query:

| ?- type(Type).

Type = bot ?;

Type = cat ?;

Type = synsem ?

yes

Note that the prompt | ?- is provided by Prolog, while the query consists of
the string type(Type)., including the period and a return after the period. Pro-
log then responds with instantiations of any variables in the query if the query is
successful. Thus the first solution for Type that is found above is Type = bot. Af-
ter providing an instantiation representing the solution to the query, Prolog then
provides another prompt, this time in the form of a single question mark. After
the first prompt above, the user typed a semicolon and return, indicating that
another solution is desired. The second solution Prolog found was Type = cat.
After this prompt, the user requested a third solution. After the third solution,
Type = synsem, the user simply input a return, indicating that no more solutions
were desired. These two options, semicolon followed by return, and a simple re-
turn, are the only ones relevant for ALE. If the anonymous variable is used in a
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query, no substitutions are given for it in the solution. If there are no solutions to
a query, Prolog returns no as an answer. Consider the following two queries:

| ?- type(bot).

yes

| ?- type(foobar).

no

In both cases, no variables are given in the input, so a simple yes/no answer, fol-
lowed by another prompt, is all that is returned.

The second useful probe on the signature indicates type subsumptions and
type unifications. To test type subsumption, use the following form of query:

| ?- sub_type(X,Y).

X = and,

Y = and ?;

X = backward,

Y = backward ?

yes

Note that with two variables, substitutions for both are given, allowing the possi-
bility of iterating through the cases. In general, wherever a variable may be used
in a query, a constant may also be used. Thus sub type(synsem,forward). is a
valid query, as are sub type(synsem,X)and sub type(Y,forward). The first argu-
ment is the more general type, with the second argument being the subtype.

Type unifications are handled by the following form of query:

| ?- unify_type(T1,T2,T).

The interpretation here is that T1 unified with T2 produces T3. As before, any
subset of the three variables may be instantiated for the test and the remaining
variables will be solved for.

The following query will indicate whether given features have been defined
and can also be used to iterate through the features if the argument is uninstan-
tiated:

| ?- feature(F).

Feature introduction can be tested by:

| ?- introduce(F,T).

which holds if feature F is introduced at type T.
Type constraints can be tested using:

| ?- show_cons(Type).
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which will display the description of the constraint assigned to the type, Type.
Finally, the inherited appropriateness function can be tested by:

| ?- approp(Feat,Type,Restr).

A solution indicates that the value for feature Feat for a type Type structure is
of type Restr. As usual, any of the variables may be instantiated, so that it is
possible to iterate through the types appropriate for a given feature or the features
appropriate for a given type, the restrictions on a given feature in a fixed type, and
so on.

There is one higher-level debugging routine for the signature that outputs a
complete specification for a type, including a list of its subtypes and supertypes,
along with the most general feature structure of that type (after all type inference
and constraint satisfaction has been performed). An example of the show type/1

query is as follows:

| ?- show_type functional.

TYPE: functional

SUBTYPES: [forward,backward]

SUPERTYPES: [synsem]

MOST GENERAL SATISFIER:

functional

ARG synsem

RES synsem

If synsem had any appropriate features, these would have been added, along with
their most general appropriate values.

2.2 Evaluating Descriptions

Descriptions can be evaluated in order to find their most general satisfiers. ALE

provides the following form of query:

| ?- mgsat tl:e_list.

ne_list_quant

HD quant

RESTR proposition

SCOPE proposition

VAR individual

TL e_list

ANOTHER? n.

yes

Note that there must be whitespace between the mgsat and the description to be
satisfied. The answer given above is the most general satisfier of the description
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tl:e list using the signature in the categorial grammar in the appendix. It is im-
portant to note here that type inference is being performed to find most general
satisfiers. In the case at hand, because lists in the categorial grammar are typed to
have quantifiers as their HD values, the value of the HD feature in the most general
satisfier has been coerced to be a quantifier.

Satisfiable non-disjunctive descriptions always have unique most general sat-
isfiers as a consequence of the way in which the type system is constrained. But
a description with disjunctions in it may have multiple satisfiers. Consider the
following query:

| ?- mgsat hit,hitter:(j;m).

hit

HITTEE individual

HITTER j

ANOTHER? y.

hit

HITTEE individual

HITTER m

ANOTHER? y.

no

After finding the first most general satisfier to the description, the user is
prompted as to whether or not another most general satisfier should be sought.
As there are only two most general satisfiers of the description, the first request for
another satisfier succeeds, while the second one fails. Failure to find additional
solutions is indicated by the no response from Prolog.

Error messages will result if there is a violation of the type hierarchy in the
query. For instance, consider the following query containing two type errors be-
fore a satisfiable disjunct:

| ?- mgsat hd:j ; a ; j.

add_to could not add incompatible type j to:

quant

RESTR proposition

SCOPE proposition

VAR individual

add_to could not add undefined type: a to

bot

MOST GENERAL SATISFIER OF: hd:j;a;j

j
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ANOTHER?

Here the two errors are indicated, followed by a display of the unique most general
satisfiers. The problem with the first disjunct is that lists have elements which
must be of the quantifier type, which conflicts with the individual type of j, while
the second disjunct involves an undefined type a. Note that in the error messages,
there is some indication of how the conflict arose as well as the current state of the
structure when the error occurred. For instance, the system had already figured
out that the head must be a quantifier, which it determined before arriving at the
incompatible type j. The conflict arose when an attempt was made to add the
type j to the quant type object.

To explore unification, simply use conjunction and mgsat. In particular, to see
the unification of descriptions D1 and D2, simply display the most general satis-
fiers of D1, D2, and their conjunction (D1,D2). To obtain the correct results, D1 and
D2 must not share any common variables. If they do, the values of these will be
unified across D1 and D2, a fact which is not represented by the most general sat-
isfiers of either D1 or D2. Providing most general satisfiers also allows the user to
test for subsumption or logical equivalence by visual inspection, by using mgsat/1
and comparing the set of solutions. Future releases should contain mechanisms
for evaluating subsumption (entailment), and hence logical equivalence of de-
scriptions.

mgsat can also be used to test functional descriptions, e.g., for the functional
append on p. 32:

| ?- mgsat append([bot],[bot,bot]).

ne_list

HD bot

TL ne_list

HD bot

TL ne_list

HD bot

TL e_list

ANOTHER?

The Prolog predicate iso desc/2 can be used to discover whether two descrip-
tions evaluate to the same feature structure. This can be useful for testing exten-
sional type declarations.

| ?- iso_desc(X,X).

X = _A-bot ?

yes

| ?- iso_desc((a_ atom),(a_ atom)). % a_ atoms are extensional

yes
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| ?- iso_desc(b,b). % for b, intensional

no

| ?- iso_desc(a,a). % for a, extensional, with feature f

no

| ?- iso_desc(f:(a_ at1),f:(a_ at1)). % f approp. to a_ atoms

yes

| ?- iso_desc(f:(a_ at1),f:(a_ at2)).

no

2.3 Hiding Types and Features

With a feature structure system such as ALE, grammars and programs often ma-
nipulate very large feature structures. To aid in debugging, two queries allow the
user to focus attention on particular types and features by supressing the printing
of other types and features.

The following command supresses printing of a type:

| ?- no write type(T).

After no write type(T) is called, the type T will no longer be displayed during
printing. To restore the type T to printed status, use:

| ?- write type(T).

If T is a variable in a call to write type/1, then all types are subsequently printed.
Alternatively, the following query restores printing of all types:

| ?- write types.

Features and their associated values can be supressed in much the same way
as types. In particular, the following command blocks the feature F and its values
from being printed:

| ?- no write feat(F).

To restore printing of feature F , use:

| ?- write feat(F).

If F is a variable here, all features will subsequently be printed. The following
special query also restores printing of all features.

| ?- write feats.
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2.4 Evaluating Definite Clause Queries

It is possible to display definite clauses in feature structure format by name. The
following form of query can be used:

| ?- show_clause append.

HEAD: append(e_list,

[0] bot,

[0] )

BODY: true

ANOTHER? y.

HEAD: append(ne_list_quant

HD [0] quant

RESTR proposition

SCOPE proposition

VAR individual

TL [1] list_quant,

[2] bot,

ne_list_quant

HD [0]

TL [3] list_quant)

BODY: append([1],

[2],

[3])

ANOTHER? y.

no

Note that this example comes from the categorial grammar in the appendix. Also
note that the feature structures are displayed in full with tags indicating structure
sharing. Next, note that prompts allow the user to iterate through all the clauses.
The number of solutions might not correspond to the number of clause defini-
tions in the program due to disjunctions in descriptions which are resolved non-
deterministically when displaying rules. But it is important to keep in mind that
this feature structure notation for rules is not the one ALE uses internally, which
compiles rules down into elementary operations which are then compiled, rather
than evaluating them as feature structures by unification. In this way, ALE is more
like a logic programming compiler than an interpreter. Finally, note that the arity
of the predicate being listed may be represented in the query as in Prolog. For in-
stance, the query show clause append/3 would show the clauses for append with
three arguments.

Definite clauses in ALE can be evaluated by using a query such as:

| ?- query append(X,Y,[a,b]).
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append(e_list,

[0] ne_list

HD a

TL ne_list

HD b

TL e_list,

[0] )

ANOTHER? y.

append(ne_list

HD [0] a

TL e_list,

[1] ne_list

HD b

TL e_list,

ne_list

HD [0]

TL [1] )

ANOTHER? y.

append(ne_list

HD [0] a

TL ne_list

HD [1] b

TL e_list,

[2] e_list,

ne_list

HD [0]

TL ne_list

HD [1]

TL [2] )

ANOTHER? y.

no

The definition of append/3 is taken from the syllabification grammar in the ap-
pendix. After displaying the first solution, ALE queries the user as to whether or
not to display another solution. In this case, there are only three solutions, so
the third query for another solution fails. Note that the answers are given in fea-
ture structure notation, where the macro [a,b] is converted to a head/tail feature
structure encoding.

Unlike Prolog, in which a solution is displayed as a substitution for the vari-
ables in the query, ALE displays a solution as a satisfier of the entire query. The
reason for this is that structures which are not given as variables may also be fur-
ther instantiated due to the type system. Definite clause resolution in ALE is such
that only the most general solutions to queries are displayed. For instance, con-
sider the following query, also from the syllabification grammar in the appendix:
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| ?- query less_sonorous(X,r).

less_sonorous(nasal,

r)

ANOTHER? y.

less_sonorous(sibilant,

r)

ANOTHER? n.

Rather than enumerating all of the nasal and sibilant types, ALE simply dis-
plays their supertype. On the other hand, it is important to note that the query
less sonorous(s,r) would succeed because s is a subtype of sibilant. This ex-
ample also clearly illustrates how ALE begins each argument on its own line ar-
ranged with the query.

In general, the goal to be solved must be a literal, consisting only of a rela-
tion applied to arguments. In particular, it is not allowed to contain conjunction,
disjunction, cuts, or other definite clause control structures. To solve a more com-
plex goal, a definite clause must be defined with the complex goal as a body and
then the head literal solved, which will involve the resolution of the body.

There are no routines to trace the execution of definite clauses. Future releases
of ALE will contain a box port tracer similar to that used for Prolog. At present, the
best suggestion is to develop definite clauses modularly and test them from the
bottom-up to make sure they work before trying to incorporate them into larger
programs.

2.5 Displaying Grammars

ALE provides a number of routines for displaying and debugging grammar specifi-
cations. After compile-time errors have been taken care of, the queries described
in this section can display the result of compilation.

Lexical entries can be displayed using the following form of query:

| ?- lex(kid).

WORD: kid

ENTRY:

cat

QSTORE e_list

SYNSEM basic

SEM property

BODY kid

ARG1 [0] individual

IND [0]

SYN n
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ANOTHER? y.

no

As usual, if there are multiple entries, ALE makes a query as to whether more
should be displayed. In this case, there was only one entry for kid in the cate-
gorial grammar in the appendix.

Another predicate, export words(Stream,Delimiter), writes an alphabetised
list of all of the words in the lexicon, separated by Delimiter, to Stream. In SICS-
tus Prolog, for example, export words(user output,'nn')will write the words to
standard output (such as the screen), one to a line.

Empty lexical entries can be displayed using:

| ?- empty.

EMPTY CATEGORY:

cat

QSTORE ne_list_quant

HD some

RESTR [0] proposition

SCOPE proposition

VAR [1] individual

TL e_list

SYNSEM forward

ARG basic

SEM property

BODY [0]

IND [1]

SYN n

RES basic

SEM [1]

SYN np

ANOTHER? no.

Note that the number specification was removed to allow the empty category to
be processed with respect to the categorial grammar type system. As with the
other display predicates, empty provides the option of iterating through all of the
possibilities for empty categories.

Grammar rules can be displayed by name, as in:

| ?- rule forward_application.

RULE: forward_application

MOTHER:

cat

QSTORE [4] list_quant
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SYNSEM [0] synsem

DAUGHTERS/GOALS:

CAT cat

QSTORE [2] list_quant

SYNSEM forward

ARG [1] synsem

RES [0]

CAT cat

QSTORE [3] list_quant

SYNSEM [1]

GOAL append([2],

[3],

[4])

ANOTHER? n.

Rules are displayed as most general satisfiers of their mother, category and goal
descriptions. It is important to note that this is for display purposes only. The
rules are not converted to feature structures internally, but rather to predicates
consisting of low-level compiled instructions. Displaying a rule will also flag any
errors in finding most general satisfiers of the categories and rules in goals, and
can thus be used for rule debugging. This can detect errors not found at compile-
time, as there is no satisfiability checking of rules performed during compilation.

Macros can also be displayed by name, using:

| ?- macro np(X).

MACRO:

np([0] sem_obj)

ABBREVIATES:

basic

SEM [0]

SYN np

ANOTHER? n.

First note that the macro name itself is displayed, with all descriptions in the
macro name given replaced with their most general satisfiers. Following the
macro name is the macro satisfied by the macro description with the variables
instantiated as shown in the macro name display. Note that there is sharing be-
tween the description in the macro name and the SEM feature in the result. This
shows where the parameter is added to the macro’s description.

Finally, it is possible to display lexical rules, using the following query:

| ?- lex_rule plural_n.
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LEX RULE: plural_n

INPUT CATEGORY:

n

NUM sing

PERS pers

OUTPUT CATEGORY:

n

NUM plu

PERS pers

MORPHS:

[g,o,o,s,e] becomes [g,e,e,s,e]

[k,e,y] becomes [k,e,y,s]

A,[m,a,n] becomes A,[m,e,n]

A,B becomes A,B,[e,s]

when fricative(B)

A,[e,y] becomes A,[i,e,s]

A becomes A,[s]

ANOTHER? n.

Note that the morphological components of a rule is displayed in canonical form
when it is displayed. Note that variables in morphological rules are displayed as
upper case characters. When there is sharing of structure between the input and
output of a lexical rule, it will be displayed as such. As with the other ALE gram-
mar display predicates, if there are multiple solutions to the descriptions, these
will be displayed in order. Also, if there is a condition on the categories in the form
of an ALE definite clause goal, this condition will be displayed before the morpho-
logical clauses. As with grammar rules, lexical rules are compiled internally and
not actually executed as feature structures. The feature structure notation is only
for display. Also, as with grammar rules, displaying a lexical rule may uncover
inconsistencies which are not found at compile time.

2.6 Executing Grammars: Parsing

In this section, we consider the execution of ALE phrase structure grammars com-
piled for parsing. The examples shown in this section have been produced while
running with the mini-interpreter off. The mini-interpreter will be discussed in
the next section.

The primary predicate for parsing is illustrated as follows:

| ?- rec [john,hits,every,toy].

STRING:

0 john 1 hits 2 every 3 toy 4

CATEGORY:

cat



2.6. EXECUTING GRAMMARS: PARSING 83

QSTORE e_list

SYNSEM basic

SEM every

RESTR toy

ARG1 [0] individual

SCOPE hit

HITTEE [0]

HITTER j

VAR [0]

SYN s

ANOTHER? y.

CATEGORY:

cat

QSTORE ne_list_quant

HD every

RESTR toy

ARG1 [0] individual

SCOPE proposition

VAR [0]

TL e_list

SYNSEM basic

SEM hit

HITTEE [0]

HITTER j

SYN s

ANOTHER? y.

no

The first thing to note here is that the input string must be entered as a Prolog list
of atoms. In particular, it must have an opening and closing bracket, with words
separated by commas. No variables should occur in the query, nor anything other
than atoms. The first part of the output repeats the input string, separated by
numbers (nodes in the chart) which indicate positions in the string for later use in
inspecting the chart directly. ALE asserts one lexical item for every unit interval,
with empty categories being stored as loops from every single node to itself. The
second part of the output is a category which is derived for the input string. If
there are multiple solutions, these can be iterated through by providing positive
answers to the query. The final no response above indicates that the category
displayed is the only one that was found. If there are no parses for a string, an
answer of no is returned, as with:

| ?- rec([runs,john]).

STRING:

0 runs 1 john 2
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no

Notice that there is no notion of “distinguished start symbol” in parsing.
Rather, the recognizer generates all categories that it can find for the input string.
This allows sentence fragments and phrases to be analyzed, as in:

| ?- rec [big,kid].

STRING:

0 big 1 kid 2

CATEGORY:

cat

QSTORE ne_list_quant

HD some

RESTR and

CONJ1 kid

ARG1 [0] individual

CONJ2 big

ARG1 [0]

SCOPE proposition

VAR [0]

TL e_list

SYNSEM basic

SEM [0]

SYN np

ANOTHER? n.

There is also a two-place version of rec that displays only those parses that
satisfy a given description:

| ?- rec([big,kid],s).

STRING:

0 big 1 kid 2

no

This call to rec/2 failed because there were no parses of big kid of type, s. Inter-
nally, the parser still generates all of the edges that it normally does — the extra
description is only applied at the end as a filter.

Once parsing has taken place for a sentence using rec/1, it is possible to look
at categories that were generated internally. In general, the parser will find every
possible analysis of every substring of the input string, and these will be available
for later inspection. For instance, suppose the last call to rec/1 executed was rec
[john,hits,every,toy], the results of which are given above. Then the following
query can be made:
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| ?- edge(2,4).

COMPLETED CATEGORIES SPANNING: every toy

cat

QSTORE ne_list_quant

HD every

RESTR toy

ARG1 [0] individual

SCOPE proposition

VAR [0]

TL e_list

SYNSEM basic

SEM [0]

SYN np

Edge created for category above:

index: 20

from: 2 to: 4

string: every toy

rule: np_det_nbar

# of dtrs: 2

Action(retract,dtr-#,continue,abort)?

|: continue.

no

| ?-

The possible replies in the action-line will be discussed in the next section. This
tells us that from positions 2 to 4, which covers the string every toy in the input,
the indicated category was found. Even though an active chart parser is used, it is
not possible to inspect active edges. This is because ALE represents active edges
as dynamic structures that are not available after they have been evaluated.

Using edge/2 it is possible to debug grammars by seeing how far analyses pro-
gressed and by inspecting analyses of substrings.

There is also a predicate, rec/4 that binds the answer to variables instead of
displaying it:1

| ?- rec([kim,walks],Ref,SVs,Iqs).

Iqs = [ineq(_A,index(_B-third,_C-plur,_D-masc),_E,index(_B-third,_C-plur,

_D-masc),done)],

SVs = phrase(_F-synsem(_G-loc(_H-cat(_I-verb(_J-minus,_K-minus,_L-none,_M-

bool,_N-fin),_O-unmarked,_P-e_list),...)))?

Ref is an unbound variable that represents the root node of the resulting feature
structure. SVs is a term whose functor is the type of the feature structure, whose

1Actually, this example is a bit of an improvisation — the sample HPSG grammar included in the
ALE distribution does not use inequations.
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arity is the number of appropriate features for that type, and whose arguments are
the values at those appropriate features in alphabetical order. Each value, in turn,
is of the form, Ref-SVs, another pair of root variable and type-functored term. Iqs
is a list of the inequations that apply to the feature structure and its substructures.
Each member of the list represents a disjunction of inequations, i.e., one must be
satisfied, with the list itself being interpreted conjunctively, i.e., every member
must be satisfied. Each member is represented by a chain of ineq/5 structures:

ineq(Ref1,SVs1,Ref2,SVs2,ineq(......,done)...)

The first four arguments represent the Ref-SVs pairs of the two inequated fea-
ture structures of the first disjunct. The fifth argument contains another ineq/5
structure, or done/0. These three structures are suitable for passing to gen/3 or
gen/4. These representations are not grounded; so if you want to assert them into
a database, be sure to assert them all in one predicate to preserve variable shar-
ing. For more details on ALE’s internal representation, the reader is referred to
Carpenter and Penn (1996).

There is also a rec/5, which works just like rec/4, but filters its output through
the description in its last argument, just like rec/2:

| ?- rec([kim,walks],Ref,SVs,Iqs,phrase).

Iqs = [ineq(_A,index(_B-third,_C-plur,_D-masc),_E,index(_B-third,_C-plur,

_D-masc),done)],

SVs = phrase(_F-synsem(_G-loc(_H-cat(_I-verb(_J-minus,_K-minus,_L-none,_M-

bool,_N-fin),_O-unmarked,_P-e_list),...)))?

The call succeeds here because the given answer is of type, phrase.
rec list/2 iteratively displays all of the solutions for each string in a list of list

of words that satisfy a description:

| ?- rec_list([[kim,sees,sandy],[sandy,sees,kim]],phrase).

STRING:

0 kim 1 sees 2 sandy 3

CATEGORY:

phrase

QRETR e_list

QSTORE e_set

SYNSEM synsem...

ANOTHER? y.

STRING:

0 sandy 1 sees 2 kim 3

CATEGORY:

phrase

QRETR e_list
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QSTORE e_set

SYNSEM synsem

ANOTHER? y.

no

If no filtering through a description is desired, the description, bot, which is triv-
ially satisfied, can be used. When rec list/2 runs out of solutions for a string, it
moves on to the next string.

rec best/2 iteratively displays all of the solutions satisfying a given descrip-
tion for the first string in a list of list of words that has a solution satisfying that
description.

| ?- rec_best([[kim,sees,sandy],[sandy,sees,kim]],phrase).

STRING:

0 kim 1 sees 2 sandy 3

CATEGORY:

phrase

QRETR e_list

QSTORE e_set

SYNSEM synsem...

ANOTHER? y.

no

When rec best/2 runs out of solutions for a string that had at least one solution,
it fails. It only tries the strings in its first argument until it finds one that has solu-
tions.

There is also a three-place rec list/3 that collects the solutions to rec list/2

in a list of terms of the form fs(Tag-SVs,Iqs).

2.7 Executing Grammars: Generation

The generator can be used with the predicate gen/1,3 predicate. It can take a
single description argument:

| ?- gen((sentence,

sem:(pred:decl,

args:[(pred:call_up,

args:[pred:mary,pred:john])]))).

CATEGORY:

sentence

SEM sem
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ARGS arg_ne_list

HD sem

ARGS arg_ne_list

HD sem

ARGS arg_list

PRED mary

TL arg_ne_list

HD sem

ARGS arg_list

PRED john

TL e_list

PRED call_up

TL e_list

PRED decl

STRING:

mary calls john up

ANOTHER? y.

STRING:

mary calls up john

ANOTHER? y.

no

Notice the extra set of parentheses necessary to make the whole description a
single argument for gen/1.

gen can also take three arguments:

gen(Ref,SVs,Iqs)

where Ref, SVs and Iqs are the three parts of ALE’s internal representation of a
feature structure as defined in the last section. This alternative is most useful
when the feature structure has been generated before by another process, like
parsing, or retrieved from a database.

| ?- rec([john,calls,mary,up],Ref,SVs,Iqs),gen(Ref,SVs,Iqs).

CATEGORY:

sentence

SEM sem

ARGS arg_ne_list

HD sem

ARGS arg_ne_list

HD sem
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ARGS e_list

PRED john

TL arg_ne_list

HD sem

ARGS e_list

PRED mary

TL e_list

PRED call_up

TL e_list

PRED decl

STRING:

john calls mary up

ANOTHER? n.

Iqs = [],

SVs = sentence(_O-sem(_N-arg_ne_list(_M-sem(_L-arg_ne_list(_K-

sem(_J-e_list,_I-john),_H-arg_ne_list(_G-sem(_F-e_list,_E-mary),

_D-e_list)),_C-call_up),_B-e_list),_A-decl)) ?

yes

In both cases, ALE will print the input feature structure and then will generate and
display all possible string solutions through backtracking.

It is also possible to bind the string to a variable, using gen/4 :

gen(Ref,SVs,Iqs,Ws).

Wswill non-deterministically be bound to the word lists that constitute valid solu-
tions to the generation problem. This can be used as input to rec/1, for example.

| ?- rec([john,calls,mary,up],Ref,SVs,Iqs),gen(Ref,SVs,Iqs,Ws).

Iqs = [],

SVs = sentence(_O-sem(_N-arg_ne_list(_M-sem(_L-arg_ne_list(_K-

sem(_J-e_list,_I-john),_H-arg_ne_list(_G-sem(_F-e_list,_E-mary),

_D-e_list)),_C-call_up),_B-e_list),_A-decl)),

Ws = [john,calls,mary,up] ? ;

Iqs = [],

SVs = sentence(_O-sem(_N-arg_ne_list(_M-sem(_L-arg_ne_list(_K-

sem(_J-e_list,_I-john),_H-arg_ne_list(_G-sem(_F-e_list,_E-mary),

_D-e_list)),_C-call_up),_B-e_list),_A-decl)),

Ws = [john,calls,up,mary] ? ;

Iqs = [],

SVs = s(_L-finite,_K-sem(_J-arg_ne_list(_I-sem(_H-e_list,_G-john),
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_F-arg_ne_list(_E-sem(_D-e_list,_C-mary),_B-e_list)),_A-call_up)),

Ws = [john,calls,mary,up] ? ;

Iqs = [],

SVs = s(_L-finite,_K-sem(_J-arg_ne_list(_I-sem(_H-e_list,_G-john),

_F-arg_ne_list(_E-sem(_D-e_list,_C-mary),_B-e_list)),_A-call_up)),

Ws = [john,calls,up,mary] ? ;

no

The last two solutions in the example above are generated because the input
string, john calls mary up, can be parsed both as a sentence type and as an
s type.

2.8 Mini-interpreter (parsing only)

ALE contains a mini-interpreter that allows the user to traverse and edit an ALE

parse tree. By default, the mini-interpreter is off when ALE is loaded. To turn the
mini-interpreter on, simply type:

| ?- interp.

interpreter is active

yes

| ?-

To turn it off again, use nointerp. Any parse automatically stores the following
information on the edges added to ALE’s chart:

� Spanning nodes

� Substring spanned

� Creator

� Daughters (if any)

The spanning nodes are the nodes in the chart that the edge spans. The substring
spanned is the concatenation of lexical items between the spanning nodes. If
an edge was formed by the application of an ALE grammatical rule, its creator is
that rule, with the daughters being the daughters of the rule, i.e., the cat>, and
cats> of the rule). If the rule was created by EFD closure, the mini-interpreter
will treat it as the user’s rule it was created from, displaying the empty categories
that had matched its daughters during EFD closure in the same way as daugh-
ters matched at run-time. If an edge represents an empty category, its creator is
normally empty; but empty categories created during EFD closure will show the
rules that created them, along with their empty category daughters. If an edge
represents a lexical item, its creator is lexicon. In the case of empty categories
not created by EFD closure and all lexical items, there are no daughters.
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The status of the mini-interpreter has no effect on compilation. The same
code is used regardless of whether the mini-interpreter is active or inactive. The
mini-interpreter only has an effect on the run-time commands rec/1,2,4,5 and
drec/1.

When the mini-interpreter is active, rec/1 operates in one of two modes:
query-mode or go-mode. When the mini-interpreter is active, rec/1 always be-
gins in query-mode. In query-mode, the user is prompted just before any edge is
added. Because ALE parses from right to left, the edges are encountered in that
order. The prompt consists of a display of the feature structure for the edge, fol-
lowed by the mini-interpreter information for that edge, followed by an action-
line, which lists the options available to the user. For example (from the HPSG

grammar included in the ALE distribution):

| ?- rec([kim,sees,sandy]).

STRING:

0 kim 1 sees 2 sandy 3

word

QRETR list_quant

QSTORE e_set

SYNSEM synsem

LOC loc

CAT cat

HEAD noun

CASE case

MOD none

PRD bool

MARKING unmarked

SUBCAT e_list

CONT nom_obj

INDEX [0] ref

GEN gend

NUM sing

PER third

RESTR e_set

Edge created for category above:

from: 2 to: 3

string: sandy

rule: lexicon

# of dtrs: 0

Action(add,noadd,go(-#),break,dtr-#,abort)?

|:

We see, in this example, the main action-line for rec. If the user selects add, the
edge is added, and rec proceeds, in query-mode, as usual. If noadd is selected,
the edge is not added, and rec proceeds in query-mode. In every ALE action-line,
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the first option is the one that ALE would have chosen if the mini-interpreter were
disabled.

go puts the mini-interpreter into go-mode. In go-mode, rec proceeds as it
would if the mini-interpreter were inactive, or to think of it another way, it func-
tions as if the user always chose the first option on every action-line, but it does
not stop to ask. As it adds the edges, it displays them, along with their mini-
interpreter information. go suffixed with a number, e.g., go-1, puts the mini-
interpreter into go-mode until it encounters an edge whose left node is that num-
ber, and then, beginning with that edge, automatically switches back into query-
mode. With ALE’s current parsing strategy, go-N will remain in go-mode until it
encounters the first edge corresponding to the (N+1)st lexical item in the string
being parsed.

break simply invokes the Prolog break commmand, placing the user into a
Prolog interpreter with a new break-level. Edges that have been added so far can
be examined and retracted at this time. When the user pops out of the break, the
current prompt is redisplayed.

dtr-N displays the Nth daughter, its mini-interpreter information, and the
action-line for dtr:

Action(retract,dtr-#,parent,abort)?

|:

retract removes the displayed edge (in this case, the daughter) from the chart.
When the parse continues, ALE grammar rules will not be able to use that edge.
The current edge (the parent of this daughter), however, can still be added. dtr-N
has the same effect as in the rec action-line. parent returns to the current edge’s
parent and its action-line (either rec or dtr).

The mini-interpreter will not display any edge that has already been retracted.
Note that if edges are retracted, there may be gaps in the sequence of chart-edge
indices.

If abort is selected, the parse is aborted. All of the edges added so far remain
in memory until the next rec statement. The edge that was displayed when abort

was chosen is discarded.
Mini-interpreter information is also available through the run-time com-

mands, edge/2 and edge/1, e.g.:

| ?- edge(2,4).

COMPLETED CATEGORIES SPANNING: every toy

cat

QSTORE ne_list_quant

HD every

RESTR toy

ARG1 [0] individual

SCOPE proposition

VAR [0]

TL e_list

SYNSEM basic
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SEM [0]

SYN np

Edge created for category above:

index: 20

from: 2 to: 4

string: every toy

rule: np_det_nbar

# of dtrs: 2

Action(retract,dtr-#,continue,abort)?

|:

Every edge that is actually asserted into the chart is assigned a unique number,
called an index, which edge/2 displays also. retract and dtr behave the same
as in the dtr action-line. continue tells the mini-interpreter that the user is done
traversing the parse tree rooted at the current edge, and to find more.

edge/1 works exactly as edge/2 does, except that its input is the unique index
number that ALE stores with every edge.

2.9 Subsumption Checking (parsing only)

ALE can perform subsumption checking on edges during parsing. By default, it
does not. To enable it, use the command:

| ?- subtest.

edge subsumption checking active

yes

| ?-

To turn it, off, use nosubtest.

When subsumption checking is enabled, ALE will only add a new feature struc-
ture to the chart between nodes n and m if there is no other edge currently span-
ning n andmwhose feature structure subsumes the new one. If, instead, the new
feature structure subsumes an existing one’s, then the existing edge is retracted
and replaced with the new one.

Note that if edges are retracted, there may be gaps in the sequence of chart-
edge indices.

Extra compiled code is required in order to make subsumption checking more
efficient. If subsumption checking is enabled when a grammar is compiled, this
code will be compiled also. If it is disabled, the subsumption checking code will
be compiled when the subtest command is given. Only in the former case, how-
ever, will subsumption checking be used during EFD closure to reduce the num-
ber of empty categories to consider at run-time. The empty categories and phrase
structure rules must be recompiled (with compile rules) if subsumption check-
ing is enabled after the initial compilation of a grammar for empty categories to
be tested for subsumption.
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Our experience has been that subsumption checking is not required in most
unification-based grammars, and should therefore be left disabled. It is use-
ful only for those grammars which have true spurious ambiguity or redundancy.
Grammars that incorporate some notion of thematic or functional structure for
representing the meaning of a sentence normally realise structural ambiguities as
semantic ambiguities that should be retained in the chart.

If both subsumption checking and the mini-interpreter are enabled, then the
user may override either of these behaviours. In the former case, before the new
feature structure is discarded, it will be displayed along with the discard action-
line:

Action(noadd,continue,break,dtr-#,existing,abort)?

|:

continue instructs the parser to look for more subsuming edges. If no more are
found, the new feature structure is added to the chart. existing displays the ex-
isting chart edge that subsumes the new one with the edge/2 action-line. The rest
behave as described above.

In the latter case, before an existing edge is retracted, its feature structure will
be displayed along with the retract action-line:

Action(retract,continue,break,dtr-#,incoming,abort)?

|:

retract retracts the existing, subsumed edge and asserts the incoming feature
structure. incoming displays the incoming feature structure, along with the
incoming action-line:

Action(noadd,dtr-#,existing,abort)?

|:

the functions of whose options have already been described.
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T2.1 The Chart Display

Trale includes code to produce output for a Chart Display developed at the DFKI
in Saarbrcken. The chart display has the following functionality:

� All passive edges that are produced during a parse are displayed.

� Several subsets of edges might be displayed:

– All edges that contributed to solutions.

– All edges that start/end at a certain position.

– All edges that were licenced by a certain rule.

– All dominated edges of a certain edge.

– All edges that dominate a certain edge.

� A list of rules in the grammar is displayed and they can be inspected.

� The rules can be applied interactively to edges in the chart and unification
failures are displayed (not fully implemented yet).

� You can generate from an edge (not fully tested).

� If your grammar has an MRS semantics you can display MRSses.

T2.1.1 Installation and Customization

To get the Tcl/TK code please contact Stephan Busemann
(Stephan.Busemann@dfki.de (mailto:Stephan.Busemann@dfki.de)). The
TCL/TK code has to be installed in the trale directory under chart display/TCL.
Tcl/TK has to be installed and wish has to be in your search path.

Specify the following in your theory.pl

:- load_cd. % loads the code for the chart display

root_symbol(@root). % symbol for input that does not end with punctuation

imp_symbol(@imp). % symbol for input that ends with '!'

decl_symbol(@decl). % symbol for input that ends with '.'

que_symbol(@que). % symbol for input that ends with '?'

cont_path([synsem,loc,cont]). % the path to the semantic content

:- chart_display. % switches the chart display on (default)

:- nochart_display. % switches the chart display off

:- english. % the commands in the Chartdisplay are English (default)

:- german. % the commands in the Chartdisplay are German

:- tcl_warnings. % output of warnings in a TCL window (default)

:- notcl_warnings. % output of warnings to console

:- mrs. % output of MRS for a parsed string
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:- nomrs. % no output (default)

:- fs. % switches feature structure output on (default)

:- nofs. % switches feature structure output off

The macros that are given as arguments to root_symbol, imp_symbol,
decl_symbol, and que_symbol have to be specified in your grammar.

You may customize the chart display yourself or use one of the
dot.chartdisplay files supplied in trale home(chart display). They should be
moved to ~/.chartdisplay.

If you put the following line in your .emacs, the prompt of the command go

will be recognized by SICStus Prolog and you can type Ctrl-C Ctrl-P to get to the
previous input and parse it (or call it) again.

(setq sicstus-prompt-regexp ">>> *\\|| [ ?][- ] *")

If your coursor is in the line of a priviously parsed utterance, you may simply hit
return and the sentence is parsed again.

T2.1.2 Working with the Chart Display

Typing go. brings you to an interactive mode. You can type in a sentence and
you will get parsing results displayed either with grisu or to stdout depending on
whether you use grisu (strongly recommended). If not open the chart display will
pop up (after a parse) and the chart will be displayed. The left mouse button gives
you actions you can apply to the edge you point to and the right mouse button
gives you actions you can perform on the whole chart. The rule names at the left
hand side are also clickable. Empty elements are not clickable yet.

While in the interactive mode, you can execute simple commands directly,
provided the command does not correspond to a lexical item in your grammar.
For instance reloading of a grammar can be done in the interactive mode by typ-
ing c.. However, if your grammar contains the letter c as a lexical object, it will be
parsed rather than executed.

fs and nofs only affect the feature structure output for sentences parsed in
the interactive mode. Parses initiated with rec directly are not affected by this
switch.

Debugging

You can use the chart display for debugging rule applications: First select a rule by
clicking at the rule and choosing the menu item ‘Select rule’. Then select an edge
from the chart. All goals that are at the first position of the rule (specified with
goal> in the rule) will be executed. Then the selected edge will be unified with the
first daughter of the rule. If the unification succeeds and the blocked constraints
that are attached to the rule and to the edge are satisfied, the next goals specified
in the rule will be executed. If this succeeds it is checked whether there are further
daughters. If this is not the case we have a passive edge which is shown to the
user. If there are further daughters an active edge is stored. This active edge can
be displayed by clicking somewhere in the display and pressing the right mouse
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button. In the following other passive edges from the chart can be combined
with the active edge. If the combination succeeds, the rule and the successfully
combined daughters are marked green. Otherwise the edge that could not be
combined is marked red. In case of a failure another passive edge can be tested
against the active edge.

If you select another rule, the active edge is deleted.
The debugging of constraints that fire due to instantiations during a unifica-

tion is difficult. To enable the debugging of single constraints a flag is set if the
char tdisplay is used for debugging. For instance if you want to check whether
a certain constraint fires, you may include debug information in the constraint.
In the following example the flag chart_debug/1 is tested and if its value is on, a
debug message is printed.

undelayed_accusative([El|T1]) if

prolog((chart_debug(on) ->

write(user_error,'Trying to assign accusative.'),

nl(user_error)

;true

)),

assign_acc(El),

accusative(T1).

Instead of printing a message you can also call the debugger or do other things.
Since this constrinat may be called during the lexicon compilation as well it would
be very difficult to debug without the flag, since you would enter debug modus
thousand times before you loaded the grammar completely.

Generation

Chart edges can be used as input for generation. You have to specify the path in
your feature structures that yields the semantic information. (SYNSEMjLOCjCONT

is the predefined path.) The semantic contribution of a selected chart edge will
be taken as input for generation and all generation results will be displayed.
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2.10 Source-Level Debugger

ALE also provides an XEmacs-based source-level debugger. This can only be used
for parsing or definite clause resolution, and only with SICStus 3.8.6 or higher,
and XEmacs 20.3 or higher. In future releases, a debugger with a more restricted
functionality will be made available for users of SWI Prolog.

The ALE source-level debugger is implemented on top of the SICStus source-
level debugger. The debugger provided with ALE has the complete functionality
of the SICStus source-level debugger with ordinary Prolog programs; so you only
need this one if you will need to debug both. SICStus debugger commands that
are not explicitly mentioned in this section are not supported in ALE debugging.

ALE source code must occur in a single file in order to be debugged. To debug
Prolog source code, please refer to the SICStus documentation. For both ALE and
Prolog debugging, the prolog flag, source info, needs to be turned on, using the
command:

| ?- prolog_flag(source_info,_,on).

The SICStus XEmacs interface should do this automatically.
When a Prolog hook is encountered while debugging an ALE grammar, the

SICStus debugger is automatically invoked. The hook will be embedded in a Pro-
log call/1 statement. If the leap option of the SICStus debugger is used, the leap
ends at the end of the hook — ALE will creep when it resumes control.

To install the ALE source-level debugger, follow the directions in the distribu-
tion file, debugger/INSTALL.

2.10.1 Running without XEmacs

To run the debugger without XEmacs, simply run SICStus Prolog from the direc-
tory with debugger.pl and type:

| ?- compile(debugger).

This assumes that ale.pl and the debugger subdirectory are located in the same
directory. If ALE.PL has not been loaded already, this will compile ale.pl as well.
There will be a warning message about buffer-mode when it loads, which can be
ignored. Then type:

| ?- noemacs.

You can add a noemacs/0 directive to the end of debugger.pl to do this automat-
ically.

2.10.2 Running with XEmacs

To run the debugger with XEmacs, you must run SICStus Prolog and ALE within
XEmacs as an inferior process. To do this:

1. set the EPROLOG environment variable to the command that runs SICStus
Prolog in the shell that you will run XEmacs from (this is not necessary if the
command is ’sicstus’),
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2. run XEmacs from the directory with debugger.pl,

3. load the file to be debugged in Prolog major mode,

4. Use the XEmacs command, M-x run-prolog, to run SICStus prolog as an
inferior process,

5. From the SICStus Prolog prompt, type:

| ?- compile(debugger).

There is also a command:

| ?- emacs.

that will turn on the XEmacs interface, if it has been disabled by noemacs/0.

2.10.3 Debugger Commands

There are seven basic commands in the ALE debugger, four of which are variants
of normal ALE commands. These four, dcompile gram/1, drec/1, dquery/1 and
dgen/1, are the debugger variants of compile gram/1, rec/1, query/1 and gen/1,
respectively. The other three, dleash/1, dskip/1, and dclear bps/0, will be ex-
plained below.

Currently, the ALE source-level debugger can only debug grammars down
to the level of feature structure unification, i.e., feature structure unification is
treated as an atomic operation. Constraints and procedural attachments on types
using cons and goal cannot be debugged either, nor can inequation enforcement,
edge subsumption checking, or extensionalization. These will be possible in a fu-
ture version. For now, dcompile gram/1 compiles a grammar in exactly the same
way that ALE normally does to the point where it can be debugged. It then re-
opens the grammar file and uses the token-stream directly to index those parts
of the grammar source code that it can debug by line number. dcompile gram/1

also requires that all of the ALE source code for a grammar be in a single file, i.e.,
unlike ALE without the debugger, you cannot load other auxiliary files from within
a grammar file. This restriction will also be lifted in a future version.

dcompile gram/1 also allows for tracing through the EFD closure algorithm,
again down to the level of feature structure unification.

After a grammar has been compiled for debugging with dcompile gram/1,
drec/1, dquery/1 and dgen/1 can be used for parsing, definite clause resolution
or generation, respectively, with the debugger. dquery/1works exactly as query/1
does: it first finds most general satisfiers of the arguments and then searches for a
solution with Prolog-style SLD-resolution using the clauses provided by the user.
drec/1 and dgen/1 work exactly as rec/1 and gen/1 do, except that lexical rules
are not compiled out, so that they can be debugged. Also remember that ALE

parses right-to-left with EFD-closed rules and empty categories, and that it uses
a semantic-head-driven generator. With parsing, the debugger can also be used
in conjunction with the chart mini-interpreter described above for extra control
of the chart. With generation, the debugger successively shows the construction
of the pivot template, pivot matching, pivot checking and the linking of the pivot
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with the root. Generation of non-semantic-head daughters is performed recur-
sively.

2.10.4 Debugger Ports and Steps

The ALE debugger is loosely based on the procedural box model of execution that
many Prolog debuggers use. There are four kinds of ports, call, exit, redo, and fail.
The ALE debugger does not support exception ports. A call port occurs at every
initial invocation of a step that ALE takes in parsing or definite clause resolution,
a list of which is given below. An exit port occurs at the successful completion of
such a step; a redo port occurs when a subsequent step has failed and ALE back-
tracks into the current step to find more solutions, and a fail port occurs when a
step has failed to produce any or any more solutions.

Consider, for example, what happens when ALE applies the following descrip-
tion to a feature structure that occurs in the lexical entry for the word, foo

foo --->(a

;f:b),

g:c.

The first port we encounter is when ALE tries to add the type a. This is a call port:

Call: add type, a, to lex entry?

If this succeeds, then an exit port occurs:

Exit: add type, a, to lex entry?

and processing moves on to g:c. If this fails, then we must backtrack through
adding a for more solutions (for example, if there is a disjunctive constraint on
that type):

Redo: add type, a, to lex entry?

If there is another solution, then another exit port occurs. Otherwise, the next
port is fail port:

Fail: add type, a, to lex entry?

and processing continues with the other disjunct, f:b. Certain steps in ALE, no-
tably the depth-first rule application of the chart parser, are failure-driven loops.
To indicate that these “failures” are actually a normal part of execution, they are
displayed as, e.g.:

Finished:close chart edge under rule application?

Enforcing descriptions at a feature also counts as a step:

Call: enforce description on f value of lex entry?

If we agree to this, then the next step would be to add the type b

Call: add type, b, to value at f?
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Step Kind Example Message
Adding types desc add type, a, to lex entry

Adding a /1 atoms desc add atom, foo(X), to lex entry

Feature selection desc enforce description on f value

of lex entry

Adding path equations desc path equate [f,g] with [f,h]

Adding inequations desc inequate ...with description

Unification (from shared desc unify ...with V ar
variables)
Macro substitution desc substitute macro description for np/1

Functional description desc evaluate functional description,

evaluation append/2

Figure B.1: Description-level Steps

and so on.
The steps in a description whose ports the ALE debugger keeps track of are

given in Figure B.1: There are other kinds of steps besides description-level ones,
that pertain to ALE’s built-in control for parsing and definite clause resolution.
These steps, along with their kind, are given in the table in Figure B.2. The steps
for generation are given in Figure B.3. Almost all of these involve sub-steps that
enforce descriptions. Some, such as chart-edge closure, involve other sub-steps
such as rule selection. Lexical rule application includes input and output morph
application, as well as morph condition (given in a when clause) application. The
one generation step of kind, lr, takes place when the pivot template is matched
against a (base or derived) lexical entry. Unlike the compiled generator, the de-
bugger does not compile lexical rules into the non-chain-rule selection step, so
that the user can see their application. Instead, a base lexical entry is first se-
lected without reference to the pivot template, then zero or more lexical rules
are applied bottom up, until a derived entry is eventually unified with the pivot
template. Lexical rules are, thus, treated as a special kind of unary chain rule.
The length of these special chains is still controlled by lex rule depth/1, not
chain length/1.

2.10.5 Leashing

With so many steps, and four possible ports, stepping through an entire parse in
a large grammar would be a very trying experience. The ALE debugger provides
three basic ways to filter through the steps to find points of interest in a parse or
definite clause query.

The first is leashing. Leashing allows the user to distinguish at which steps
information is simply displayed and at which steps the debugger stops and asks
the user what to do. Unlike the SICStus debugger, leashing in the ALE debugger
is a property of steps, not ports. The command to control leashing is dleash/1.
The argument to dleash/1 consists of a sign, + or -, plus the kind of step. A +
sign indicates that the debugger should stop and ask what to do at steps of that
kind; and a - sign indicates that it should simply display the port and proceed. For
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Step Kind Example Message
Empty category derivation empty empty category

EFD Closure empty close empty categories under rules

EFD matching empty apply daughter 1 of rule

sentence1 to empty category

Lexical entry derivation lex derive seen from base entry: see

Lexical rule application lr apply lexical rule, passive,

to see

Input morph application lr apply morph to input: see

Output morph application lr apply morph to input: see,

output: seen

Morph condition application lr apply morph condition

Functional description clause fun evaluate functional clause for

selection append/2

Definite clause selection rel evaluate relational clause for
head feature principle/2

Definite clause resolution rel resolve goal, append/3

Negated goal (\+) resolution rel resolve negated goal

Shallow cut (->;) execution rel execute shallow cut

Extensional identity (@=) rel resolve extensional identity

check
Prolog hook call rel resolve prolog hook:

(num(N),write(N)

Closing new chart edge under rule close chart edge under rule

rules as leftmost daughter application

Rule selection rule apply rule, schema1.

Figure B.2: Parsing and Definite Clause Resolution Steps

example, to turn leashing off for empty categories, type:

| ?- dleash(-empty).

yes

There is also a special kind, all, that allows the user to turn on and off leashing
on all kinds of steps at once. The default leashing at start-up is +all.

If a kind of step is leashed, then the debugger will stop at every port for every
step of that kind, and ask what to do. The possible responses are given in Fig-
ure B.4: Not all responses are available at all ports. The kind of port (call, fail, etc.)
is what determines the possible responses. The responses, ? and h are always
available, and list the other legal responses at the current port.

2.10.6 Skipping

Even leashing may not be enough for very large parses or queries because of
the sheer number of ports displayed. The ALE debugger also provides a facil-
ity for auto-skipping. Whereas turning leashing off at a kind of step is like au-
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Step Kind Example Message
Build semantic index gen build semantic index from root

Build pivot template gen build pivot template from index

Find pivot gen find pivot

Match pivot (lexical entry) gen match pivot against entry derived

from see

Match pivot (empty category) gen match pivot against empty category

Match pivot (mother of gen match pivot against mother of

non-chain rule) non-chain rule, sentence1

Apply chain rule gen apply chain rule, s, to, pivot

Pivot check gen check for link from pivot to root

Generate from pivot gen recursively generate from pivot

Generate pre-head daughters gen recursively generate pre-head

daughters from pivot

Generate post-head daughters gen recursively generate post-head

daughters from pivot

Connect pivot to root gen connect pivot to root

Connect chain node to root gen connect new chain node to root

Unify pivot template with lr unify pivot template and see

lexical entry
Unify chain node gen unify mother of chain rule, s,

with root

Figure B.3: Generation Steps

tomatically answering c (advance to next port) at those steps, auto-skipping is
like automatically answering s, which advances to the next exit or fail port of the
current step without stopping at or even displaying the ports in between. The
command for this is dskip/1, and its argument is of the same form as the ar-
gument to dleash/1. The signs have a different meaning, of course. For exam-
ple, dskip(+empty) means that you want the debugger to auto-skip steps of kind
empty, i.e., not stop and ask, whereas dleash(+empty) means that you want to
leash steps of kind empty, i.e., stop and ask. When a step where auto-skipping is
set is encountered, it is displayed with an automatic reply without stopping, e.g.:

Call: empty category? <auto-skip>

Exit: empty category? <auto-skipped>

Edge added: Number:0, Left:1, Right:1, Rule:empty

Call: close chart edge under rule application?

2.10.7 Breakpoints

The final kind of filtering is the breakpoint. In the ALE debugger, breakpoints are
a property of lines in a grammar source file, not steps or ports. For a finer grain of
resolution, it would be necessary to give each potential breakable step its own line
in the input. By setting breakpoints and then using the l response, the debugger
will advance to the next step whose line has a breakpoint without displaying any
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Input Description Ports
? show available commands at current port c,e,r,f
h same as ?
a abort processing c,e,r,f
f fail at this step (go to fail port) c,e,r
r retry this step (go from fail to call port) f
c advance to next port c,e,r,f
LF same as c
s advance to next exit/fail port of this step c,r
n advance to first port on new line of grammar file c,e,r,f
l advance to next breakpoint c,e,r,f
+ set breakpoint at current line c,e,r,f
- clear breakpoint at current line c,e,r,f
@ PrologGoal pass a goal to Prolog c,e,r,f
i toggle chart mini-interpreter c,e,r,f
d display current structure c,e,r,f

Figure B.4: Possible Responses at Debugger Ports

steps in between. If that step is not leashed or has auto-skipping set, the debugger
acts accordingly after displaying it.

There are currently two ways to set a breakpoint. One is to use the + response
from within the debugger at a step at whose line you wish to set a breakpoint. The
other is only available when the debugger is used with an installation of XEmacs
that supports XPM resources. In this case, when a source file is compiled a small
glyph will be displayed at the left edge of every breakable line. Clicking on this
glyph once with the left mouse button sets a breakpoint. Clicking again clears it.
A breakpoint can also be cleared with the - response.

It is often the case that a line will have several breakable steps on it, for exam-
ple, feature paths:

synsem:local:cat:head:verb,

qretr:e_list

If a breakpoint were set at the first line, then leaping from the call port for SYNSEM

would still advance to the call port for LOCAL:

Call: enforce description on synsem value of lex entry? l

Call: enforce description on local value of value at synsem?

To avoid this, the response n is provided, for leaping automatically to the first port
on a different line in the source file. The combination of n and l can be used to
leap more effectively in files that pack many steps, particularly description steps,
into one line.

All breakpoints can be cleared at once using the command, dclear bps/0.
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[incr TSDB()]

There is code that generates output for the profiling and test suite management
tool [incr TSDB()] (http://www.coli.uni-sb.de/itsdb/) developed by Stephan
Oepen. If you want to implement larger grammar fragments it is recommended
to use this tool. It provides the following functionality (and much more):

� storing time, number of passive edges, memory requirements, errors for ev-
ery parsed item

� compare test runs (performance, coverage, overgeneration)

� detailed comparison on item basis of

– number of readings/edges

– the derivations (i.e. tree structure with rule names)

– the MRSes

� test parts of test suites on a phenomenon basis or some other selection from
your test items (restrictions may be formulated in SQL queries)

The [incr TSDB()] uses the Parallel Virtual Machine. If you have several CPUs
idle you may distribute the processing of your test suite over several machines
which enormously shortens the time needed for testing and speeds up grammar
development.

T3.1 Installing [incr TSDB()]

Get the itsdb package from http://lingo.stanford.edu/ftp/and install it. How
to do this is described in the documentation which can be found also at this site.

T3.1.1 Setting up Shell Variables

Set the SICStus path. For instance, if you use tcsh, put the following in your .tc-
shrc:

setenv SP_PATH /usr/local/lib/sicstus-3.9.1/

T101-1
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[incr TSDB()] is called via foreign functions. The file is linked to libitsdb.so which
has to be in the LD LIBRARY PATH.

Put something like the following in your ~/.tcshrc (or the respective file for
the shell you are using):

setenv LD_LIBRARY_PATH /home/stefan/Lisp/lkb/lib/linux/

T3.1.2 Setting up .tsdbrc

Create a file ~/.tsdbrc to include something like the following:

(setf *pvm-cpus*

(list

(make-cpu

:host "laptop1"

:spawn "/home/stefan/bin/trale"

:options '("-s" "-c" "/home/stefan/Prolog/Trale/Bale/theory"

"-e" "load_tsdb,itsdb:connect_tsdb")

:class :bale :threshold 2)

)

)

In the options line you give a path to the grammar that should be loaded.
The item following :class is an identifier. You may have several calls to make-

cpu, for instance if you want to use different machines or if you want to load dif-
ferent grammars.

If you want to use two cpus in parallel, you specify two cpus with the same
class name:

(setf *pvm-cpus*

(list

(make-cpu

:host "server1"

:spawn "/home/stefan/bin/trale"

:options '("-s" "-c" "/home/stefan/Prolog/Trale/Bale/theory"

"-e" "load_tsdb,itsdb:connect_tsdb")

:class :bale1 :threshold 2)

(make-cpu

:host "server2"

:spawn "/home/stefan/bin/trale"

:options '("-s" "-c" "/home/stefan/Prolog/Trale/Bale/theory"

"-e" "load_tsdb,itsdb:connect_tsdb")

:class :bale1 :threshold 2)

)

)

T3.1.3 Setting up PVM

Furthermore you have to set up the parallel virtual machine (pvm): Create the file
~/.pvm_hosts containing something like the following:
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#

# list machines accessible to PVM; option fields are (see pvmd(8))

#

# - dx: path to `pvmd3' executable (on remote host);

# - ep: colon-separated PATH used by pvmd(8) to locate executables;

# - wd: working directory for remote pvmd(8);

# - ip: alternate (or normalized) name to use in host lookup;

#

# sp=VALUE Specifies the relative computational speed of this host

# compared to other hosts in the configuration. VALUE is an inte

# ger in the range [1 - 1000000]

laptop1 dx=/home/stefan/Lisp/lkb/bin/linux/ \

ep=/home/stefan/Lisp/lkb/lib/linux/ wd=/tmp sp=1004

server1 dx=/home/stefan/Lisp/lkb/bin/linux/ \

ep=/home/stefan/Lisp/lkb/lib/linux/ wd=/tmp sp=1004

server2 dx=/home/stefan/Lisp/lkb/bin/linux/ \

ep=/home/stefan/Lisp/lkb/lib/linux/ wd=/tmp sp=1004

The binaries and the man pages of pvm are part of the [incr TSDB()] distribu-
tion.

If you work on one host only, you will probably not have problems with PVM.
If you want to work with several machines in parallel, chances are high that PVM
does not work without debugging.

You can start the pvmd3 that comes with [incr TSDB()] by hand and then call
pvm to check if the pvm demon initialized the other machines properly. pvm pro-
vides a console. If you have one host and type conf, you get:

pvmd already running.

pvm> conf

1 host, 1 data format

HOST DTID ARCH SPEED DSIG

laptop1 40000 LINUX 1000 0x00408841

pvm>

If you configured several hosts in .pvm hosts, you should see them here. If you do
not, something went wrong in the initialization. If your PVM uses rsh (default)
then you have to make sure that rexec is enabled on all hosts. You can test this by
typing:

rsh server2 who

If this does not work, you have to consult your system administrator.

T3.1.4 Initializing a CPU

Having loaded [incr TSDB()] you can initialize a CPU by typing:

(tsdb::tsdb :cpus :bale)

Where :bale is the identifier you have choosen for your CPU.
This should load the grammar and come back saying something like:
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wait-for-clients(): `laptop1' registered as tid <262179>.

After successful registration of a client (i.e. after loading your grammar) and after
the creation of a test suite with the [incr TSDB()] podium you can process items
for instance by using Process|All Items in the [incr TSDB()] podium. Processing
can be interrupted by typing CTRL-G at the podium.

Initializing CPUs with (tsdb::tsdb :cpus :bale) redirects the output to the
/tmp/ directory. This is resonable if you work with several cpus. If you want to
see the output you may use:

(tsdb::tsdb :cpus :bale :file t)

Looking at the load messages is also useful if you see something like:

wait-for-clients(): client exit for `laptop1' <262150>

Please refer to the [incr TSDB()] manual (http://www.coli.uni-sb.de/itsdb/publications/inde
for a description of example sessions and further documentation.

T3.1.5 Creating a Test Suite

You can put together your own test suite by using the [incr TSDB()] import func-
tion (File|Import|Test Items). This function imports data from an ASCII text file.
For example:

;;; intransitive

Karl schlft. ;; this is a very simple example

Der Mann schlft.

;;; transitive

Liebt Karl Maria?

Karl liebt Maria.

;;; np

der Mann

der klug Mann

der Mann, der ihn kennt

;;; pronoun

Er schlft

Er kennt ihn.

;; subjless

Mich drstet.

;; particle_verbs

Karl denkt nach.

Karl denkt ber Maria nach.

*Karl nachdenkt ber Maria.

;; unaccusatives

Er fllt mir auf.

;;; perfect

Er hat geschlafen.

Du wirst schlafen.

Du wirst geschlafen haben.
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;;; free_rc

Wer schlft, stirbt.

Wen ich kenne, begre ich.

Was er kennt, it er.

Wo ich arbeite, schlafe ich.

ber was ich nachdenke, hast du nachgedacht.

Ich liebe, ber was du nachdenkst.

ber was du nachdenkst, gefllt mir.

;;; case

*Liebt ihn ihn?

Ungrammatical sentences are marked with a star. Everything that follows two
‘;’ is treated as a comment. The phenomenon is given on a separate line starting
with three ‘;’. If you want [incr TSDB()] to display statistics on a phenomenon-
based basis, you have to make [incr TSDB()] know these phenomena. This can be
done by specifiying them in the .tsdbrc file:

(setf *phenomena*

(append

(list "intransitive"

"transitive"

"np"

"pronoun"

"perfect"

"free_rc"

"case")

*phenomena*))

The data base you created is in your data base root directory. If you want to
use it as a general skeleton, you have to move it to the skeleton directory and up-
date the Index.lisp file apropriately. You can find out about the location of these
directories under Options in the [incr TSDB()] podium.

The following should be specified in your grammar file (theory.pl):

grammar_version('Trale GerGram 0.3').

root_symbol(@root). % symbol for input that does not end with punctuation

imp_symbol(@imp). % symbol for input that ends with '!'

decl_symbol(@decl). % symbol for input that ends with '.'

que_symbol(@que). % symbol for input that ends with '?'

The grammar version will be shown in the run relation. The root symbol is used
for parsing. The macros that are given as arguments to root symbol, imp symbol,
decl symbol, and que symbol have to be specified in your grammar.

If you use CVS for version control you may consider the following entry for
your grammar version.

grammar_version('Trale GerGram $Revision: 1.1 $').

When you check in a new version the revision number is automatically updated
by CVS.

The following specification can optionally be given in your theory.pl:
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% before doing a parse all lexical descriptions

% given in retract_before_parsing/1 are removed

% this is used here to decrease the chart size

% zero inflected elements do not interfere.

retract_before_parsing(stem).
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Pretty-printing Hooks

This section is intended for more advanced audiences who are proficient in Pro-
log and ALE .

ALE uses a data structure that is not so easily readable without pretty-printing
or access predicates. In order to make pretty-printing more customizable, hooks
are provided to portray feature structures and inequations. If these hooks suc-
ceed, the pretty-printer assumes that the structure/inequation has been printed
and quietly succeeds. If the hooks fail, the pretty-printer will print the struc-
ture/inequation by the default method used in previous versions of ALE . The
hooks are called with every pretty-printing call to a substructure of a given fea-
ture structure. It is, therefore, important that the user’s hooks use the arguments
provided to mark visited substructures if the feature structure being printed is
potentially cyclic, or else pretty-printing may not terminate.

4.0.1 Portraying feature structures

The hook for portraying feature structures is:

portray_fs(Type,FS,KeyedFeats,VisIn,VisOut,TagsIn,TagsOut,Col,

HDIn,HDOut)

FS is the feature structure to be printed. This is ALE’s internal representation of
this structure1 . It is recommended that access to information in this structure be
obtained by Type and KeyedFeats although the brave of heart may wish to work
with it directly. FS is also used to check token identity with structures in the Vis

and Tags trees, as described below. Type is the type of FS. KeyedFeats is a list of
fval/3 triples:

[fval(Feat_1,Val_1,Restr_1),..., fval(Feat_n,Val_n,Restr_n)]

where n is the number of appropriate features to Type. FS’s value at Feat i is
Val i, and the appropriate value restriction of Type at Feat i is Restr i.

VisIn, VisOut, TagsIn and TagsOut are AVL trees. They can be manipulated
using the access predicates found in the library(assoc)module of SICStus Pro-
log. VisIn is a tree of the nodes visited so far in the current printing call, and

1The reader is referred to the ALE User’s Guide for the structure of this representation.

102



103

TagsIn is a tree of the nodes with re-entrancies in the structure(s) currently being
printed (of which FS may just be a small piece). Each node in an AVL tree has a
key, used for searching, and a value. In both Vis and Tags trees, the key is a feature
structure such as FS. For example, the call:

get assoc(FS,VisIn,FSVal)

determines whether FS has been visited before. In the Vis tree, the value (FSVal
in the above example) at a given key is not used by the default pretty-printer. The
user may change them to anything desired. When the default pretty-printer adds
a node to the Vis tree, it adds the current FS with a fresh unbound variable as the
value.

In the Tags tree, the value at key FS is the numeric tag that the default pretty-
printer would print in square brackets to indicate structure-sharing at that loca-
tion. The user may change this value (using get assoc/5 or put assoc/

3), and the default pretty-printer will use that (with a write/1 call) instead.
A hook must return a TagsOut and VisOut tree to the pretty-printer if it suc-

ceeds. At a minimum, this means binding TagsOut to TagsIn and VisOut to VisIn.
If the structure being traversed is potentially cyclic, VisOut should, in general, up-
date VisOut to record that the current node has been visited to avoid an infinite
traversal.

Col is the number of columns that have already been indented before the hook
was called. This is useful for formatting. HDIn and HDOut are hook data. They
are not used by the default pretty-printer, and are simply passed around for the
convenience of hooks to record information to pass to their next invocation. The
initial top-level call to a portray fs hook contains 0 (zero) as the value of HDIn.
Thus, HDIn can also be used to distinguish the first call from subsequent calls
provided that the 0 is replaced with something else in recursive calls.

The file pphooks.pl (discussed in subsection 4.0.3 below) shows a simple
printing hook to produce output very much as the default pretty-printer would.

When a portray fs hook prints one of FS’s feature values, it typically will call
the pretty-printer rather than attempt to manipulate the data structure directly.
This callback is provided by:

print_fs(VarType,FS,VisIn,VisOut,TagsIn,TagsOut,Col,HDIn,HDOut)

Note that the type and feature values of FS do not need to be supplied—those
will be filled in by the system before control is passed to portray fs or the default
pretty-printer.

VarType is currently not used. The other positions are the same as in
portray fs.

4.0.2 Portraying inequations

The hook for inequations is:

portray_ineq(FS1,FS2,IqsIn,IqsOut,TagsIn,TagsOut,VisIn,VisOut,Col,

HDIn,HDOut).
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This is called when there is an inequation between FS1 and FS2 with IqsIn being
the remaining inequations. The hook should return the remainder to consider
printing next in IqsOut, which is normally bound to IqsIn. IqsIn can also be
used to test whether FS1=\=FS2 is the last inequation.

Col is the number of columns that the default pretty-printer would print be-
fore printing FS1. This is different from the use of Col in potray fs where it is
the number of columns already printed. The other arguments are the same as in
portray fs.

Inequations are typically printed after all feature structures and their sub-
structures in a top-level call to the pretty-printer have been printed. Likewise,
portray ineq is only called once portray fs has been called on all feature struc-
tures and their substructures in a top-level call. Typically, the arguments to in-
equations will thus have been visited before—the only exceptions to this are in-
equated extensionally typed feature structures.

4.0.3 A sample pretty-printing hook

The following Prolog code shows how the default pretty-printer can be written
as a hook. This code is available online on the ALE web site under the name
pphooks.pl.

The file has two top-level predicates: portray fs/10 and portray ineq/11.
As mentioned above, the former is responsible for printing feature structures and
the latter, for printing inequations.

The first thing that portray fs/10 does is check whether the feature structure
it is printing is tagged, i.e., whether it is structure-shared with another feature
structure. This check is made using get assoc(FS,TagsIn,Tag). If so, the tag is
printed between square brackets. Then using get assoc(FS,VisIn, ), the system
determines whether the feature structure has already been printed. Should this
be the case, VisOut, TagsOut and HDOut are respectively bound with VisIn, TagsIn
and HDIn, and the hook succeeds with nothing else printed.

If, on the other hand, the feature structure has not been printed already, and
FS is a variable, then either Type, or in case Type has at least one appropriate
feature, mgsat(Type), is printed. Then, put assoc/4 is used to update VisOut to
include FS, and TagsOut and HDOut are bound to TagsIn and HDIn, respectively.

In case the feature structure is not a variable, its type is written, and a call to a
recursive predicate is made to print each feature-value pair of FS in turn. Two im-
portant things to note are that (1) VisOut is updated to include FS before the call is
made to avoid non-termination on cyclic structures, and (2) the feature values are
actually printed with a callback to print fs/9 (which in turn calls portray fs/10

again).
The predicate portray ineq/11 works similarly. Note that Col spaces are

added by the hook itself, unlike portray fs/10.
The source code of pphooks.pl is given below:

% pphooks.pl

% default printer written as hook (w/o type or feat hiding or
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% FS expansion)

portray_fs(Type,FS,KeyedFeats,VisIn,VisOut,TagsIn,TagsOut,Col,

HDIn,HDOut):-

% print Tag if shared

( get_assoc(FS,TagsIn,Tag)

-> write('['),write(Tag),write('] ')

; true),

% print structure if not yet visited

( get_assoc(FS,VisIn,_)

-> VisOut = VisIn,

TagsOut = TagsIn,

HDOut = HDIn % already printed

% variable - use Type to print

; var(FS) -> ( approp(_,Type,_)

-> write('mgsat('),write(Type),write(')')

; write(Type)

),

put_assoc(FS,VisIn,_,VisOut),

TagsOut = TagsIn,

HDOut = HDIn

% otherwise print Type and recurse

; write(Type),

put_assoc(FS,VisIn,_,VisMid),

print_feats(KeyedFeats,VisMid,VisOut,TagsIn,

TagsOut,Col,HDIn,HDOut)

).

print_feats([],Vis,Vis,Tags,Tags,_Col,HD,HD).

print_feats([fval(F,Val,Restr)|Feats],VisIn,VisOut,TagsIn,

TagsOut,Col,HDIn,HDOut) :-

nl,tab(Col),

write_feature(F,LengthF), % capitalise, print and count

% characters

NewCol is Col + LengthF + 1,

print_fs(Restr,Val,VisIn,VisMid,TagsIn,TagsMid,NewCol,HDIn,

HDMid),

print_feats(Feats,VisMid,VisOut,TagsMid,TagsOut,Col,HDMid,

HDOut).

portray_ineq(FS1,FS2,Rest,Rest,VisIn,VisOut,TagsIn,TagsOut,

Col,HDIn,HDOut):-
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tab(Col),

print_fs(bot,FS1,VisIn,VisMid,TagsIn,TagsMid,Col,HDIn,

HDMid),

nl,write(' =\\= '), NewCol is Col + 7,

print_fs(bot,FS2,VisMid,VisOut,TagsMid,TagsOut,NewCol,

HDMid,HDOut).
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TRALE Output

W. Detmar Meurers, Ohio State University 1

T5.1 Saving of outputs

It can be useful to be able to save the output of a command like mgsat, rec, lex
etc, e.g. in order to

� output it again without reperforming the actual task

� view it pretty printed using different pretty printers (e.g. grisu or text)

� run a diff of the two structures (see below)

� save_results_on. saves copies of the output for later use (during the same
sesssion)

� save_results_off. switches saving results off. What was saved is pre-
served.

� show_saved(+<nr>). shows saved result number ¡nr¿

� show_all_saved. shows all saved results

� saved_id(-<nr>). returns number of saved results

� save_results(+<filename>). save results in a file

� load_results(+<filename>). loads results from a file

At system startup, saving of results is off.
1 c2003, W. Detmar Meurers
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T5.2 Grisu interface support

� grisu_off. switches grisu output off and textual pretty printer on

� grisu_on. switches grisu output on, if the system had been started with
grisu

� grisu_debug. sends the output normally sent to grisu to standard out in-
stead

� grisu_nodebug. reverts to sending grisu output to the socket at which grisu
listsns

At system startup, grisu is on if trale has been started with -g

T5.2.1 Unfilling

When running a grammar with a large signature (e.g., MERGE), you’ll immedi-
ately notice how essential proper unfilling of uninformative features is. The code
now assumes a node to be informative if

a) it is of a type that is more specific than the appropriave value of the feature
that led to it. For the top level, the appropriate value is taken to be bot.

or

b) it is structure shared with some other node

or

c) the value of one of its features is informative according to a), b) or c)

� unfill_on. switches on unfilling of uninformative nodes in the output

� unfill_off. switches it off

At system startup, unfill is on.

T5.2.2 Feature ordering

To specify the order in which features are displayed by the pretty printer, include
any number of statements of the form

� f <<< g. meaning: f will be ordered before g.

and at most one each of the following statements:

� <<< h. meaning: h will be ordered last.

� >>> i. meaning: i will be ordered first.

Currently only the grisu interface takes feature ordering into account, but this
should be added to the default textual pretty printer at some point.
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T5.2.3 Diff of feature structures

� diff(NrA,NrB).

� diff(NrA,PathA,NrB,PathB).

– NrA and NrB are numbers of saved results

– PathA and PathB are paths of the form f:g:h:i or [f,g,h,i]. The empty
path for both cases is [].

Output is provided via the grisu interface.



Appendix F

ALE Keyword Summary

The following is a summary of keywords discussed in this manual, along with
page references. A table of auxiliary keywords, those that only occur as arguments
of other keyword operators, such as the cat> argument of a rule, will be provided
in a future version.

A keyword of kind Description is one that occurs in an ALE description of a
feature structure. One of kind Def. Clause, or DCL, is one that occurs in ALE’s
definite clause language. One of kind Signature is a declaration that occurs in an
ALE signature. One of kind Type is an ALE type with special properties. One of
kind ALE is a Prolog query (entered at the | ?- prompt) that can be used after
ALE has been loaded (see p. 4). One of kind Mini-interpreter is a mini-interpreter
command that appears in an interpreter action-line. One of kind Debugger is a
Prolog query that can be used after the source-level debugger has been loaded.
For debugger responses, the reader is referred to the table on page 101.

Keyword Kind Description Page
, Desc./DCL Conjunction 23, 42
---> Signature Declare lexical entry. 47
-> (;) Def. Clause Shallow cut. 42
: Description Feature value. 23
; Desc./DCL Disjunction. 23, 42
! Def. Clause Cut. 42
\+ Def. Clause Negation-by-failure. 42
== Description Path Equation. 23
=@ Def. Clause Predefined token-identity definite

clause predicate.
42

=\= Description Inequation. 23
@ Description Macro instantiation. 29
[: : :] Description Predefined list macro. 31
% Prolog Comment delimiter. 7
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Keyword Kind Description Page
a Description/Signature Built-in extensional atom. 21
abort Mini-interpreter Abort parse. 92
add Mini-interpreter Add the current edge. 91
approp ALE Show value restriction on a feature at a type. 73
assert Prolog Add clause to Prolog database. 42
bot Type In an ALE signature, this type must appear,

and must subsume all of the other types.
6

break Mini-interpreter Invoke Prolog break. 92
chain length ALE Set limit on chain rule sequence length. 63
compile gram ALE Compile ALE signature (or parts of it — see

table, p. 66).
66

compile Prolog Compile a Prolog file. 4
cons Signature Declare type constraint. 33, 43
consult Prolog Load Prolog file (such as an ALE signature)

into database.
4

continue Mini-interpreter Proceed to look for more (subsum-
ing/subsumed) edges.

93,94

control-c Prolog Prolog interrupt. 5
control-z Unix Unix interrupt. 5
dclear bps Debugger Clear all breakpoints in current grammar

file.
101

dcompile gram Debugger Compile grammar file for source-level de-
bugging.

96

dgen Debugger Generate with source-level debugger. 96
dleash Debugger Set or remove leashing on a kind of step. 98
dquery Debugger Evaluate a definite clause with source-level

debugging.
96

drec Debugger Parse with source-level debugger. 96
dskip Debugger Set or remove auto-skipping on a kind of

step.
100

dtr-N Mini-interpreter Display Nth daughter edge of current edge. 92
edge ALE Show a chart edge. 84
emacs Debugger Turn on XEmacs interface to source-level

debugger.
96

empty ALE Show empty categories. 80
empty Signature Declare empty category. 49
export words ALE Send list of words in lexicon to stream 80
existing Mini-interpreter Display edge that subsumes new feature

structure.
94

ext Signature Declare extensional types. 20
feature ALE Test if feature exists. 72
generate ALE Tell compiler to produce code for generation

only.
66



109

Keyword Kind Description Page
gen ALE Generate a string using the compiled gener-

ator.
87,89

go Mini-interpreter Add current and all subsequent edges. 92
go-N Mini-interpreter Add current and all subsequent edges until

node N is reached.
92

halt Prolog Exit from Prolog. 5
if Def. Clause Definite clause language equivalent of :-. 40
incoming Mini-interpreter Display incoming edge that subsumes exist-

ing edge.
94

interp ALE Turn on mini-interpreter. 90
intro Signature Declare appropriate features for type. 14
introduce ALE Test if a feature was introduced by a type. 72
iso desc/2 ALE Test whether two descriptions evaluate to

the same feature structure.
75

lex ALE Show lexical entry. 79
lex compile ALE Compile lexicon intermediate code (SICStus

only)
68

lex consult ALE Dynamically consult lexicon intermediate
code

68

lex rule ALE Show lexical rule. 81
lex rule Signature Declare lexical rule. 51
lex rule depth ALE Set bound on lexical rule application. 51
list Type This type, along with types e list and

ne list, and features HD and TL, must be de-
fined in an ALE signature in order to use the
predefined [: : :] macro in descriptions, or
the cats> list-argument operator in gram-
matical rules.

31, 59

macro ALE Show macro definition. 81
macro Signature Declare macro. 28
mgsat ALE Find most general satisfier(s) of a type. 73
no write feat ALE Hide a feature and its value. 76
no write type ALE Hide a type. 76
noadd Mini-interpreter Do not add the current edge. 91
noemacs Debugger Turn off XEmacs interface to source-level

debugger.
95

nointerp ALE Turn off mini-interpreter. 90
nosubtest ALE Disable edge subsumption checking. 93
parent Mini-interpreter Return to parent edge. 92
parse ALE Tell compiler to produce code for parsing

only.
66
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Keyword Kind Description Page
parse and gen ALE Tell compiler to produce code for parsing

and generation.
66

prolog Def. Clause Definite clause hook to Prolog. 42
query ALE Evaluate a definite clause. 77
rec ALE Parse a string. 82,84–86
rec best ALE Parse first parsable string in a list of strings 87
rec list ALE Parse a list of strings 86,87
retract Mini-interpreter Retract currently displayed edge. 92
retract Prolog Remove clause from Prolog database. 42
retractall lex ALE Retract all of a word’s entries from lexicon 68
retract lex ALE Retract a word’s entry from lexicon 68
rule ALE Show grammatical rule. 80
rule Signature Declare grammatical rule. 55
semantics ALE Declares a semantics definite clause predi-

cate.
62

show clause ALE Show a definite clause. 77
show cons ALE Show constraint for a type. 72
show type ALE Show subtypes, supertypes, constraint and

most general satisfiers for a type.
73

sub Signature Declare subtyping relationship. 6
subtest ALE Enable edge subsumption checking, and, if

necessary, compile code for it.
93

sub type ALE Test subsumption between two types. 72
true Def. Clause Definite clause that is always satified (also

used to construct ground clauses in def.
clause language).

41

type ALE Test if type exists. 71
unify type ALE Unify two types. 72
update lex ALE Add new entries to lexicon 68
when Def. Clause Co-routining 44
write feat ALE Don’t hide a feature. 76
write feats ALE Don’t hide any features. 76
write type ALE Don’t hide a type. 76
write types ALE Don’t hide any types. 76
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Flag Summary

TO BE ADDED
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HDRUG: A Graphical User
Environment for Natural
Language Processing in Prolog

Hdrug is an environment to develop logic grammars / parsers / generators for
natural languages. The package is written in Sicstus Prolog version 3 and uses
library(tcltk) to implement its user interface. Tcl/Tk is a powerful script language
to develop applications for the X-windows environment.

Hdrug offers various tools to visualize lexical entries, grammar rules, definite-
clause definitions, parse trees, feature structures, lexical- rule- and type-
hierarchies, graphs of the comparison of different parsers on a corpus of test sen-
tences etc., in a Tk widget, LaTeX/DVI format, and the Clig system.

The package comes with a number of example grammars, including the gram-
mars to be found in the distribution of the ALE system.

Hdrug allows for easy comparison of different parsers/generators; it has ex-
tensive possibilities to compile feature equations into Prolog terms; it can pro-
duce graphical (Tk), and ordinary Prolog output of trees, feature structures, Pro-
log terms (and combinations thereof), plotted graphs of statistical information,
and tables of statistical information. Etc. Etc.

Using just menu’s and buttons it is possible to parse sentences, generate sen-
tences from logical form representations, view the parse trees that are derived by
the parser or generator, change a particular version of the parser on the fly, com-
pare the results of parsing the same sentence(s) with a set of different parsers,
etc.

HDRUG was designed and implemented by Gertjan van Noord. The HDRUG
home-page is http://www.let.rug.nl/~vannoord/Hdrug/.
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Pleuk Grammar Development
Environment

For those using SICStus 2.1#9 under X windows, the Pleuk grammar development
shell has been adapted for ALE. Pleuk provides a graphical user interface, facilities
for maintaining and testing corpora, and an interactive, incremental derivation
checker. Pleuk is available free of charge from:

ftp.cogsci.ed.ac.uk:/pub/pleuk

The file README contains instructions for downloading the system. Pleuk
has been ported to Sun SPARCs SunOS 4.* and HP-UX. For more information,
send email to pleuk@cogsci.ed.ac.uk. Pleuk was developed by Jo Calder and Chris
Brew of the Human Communication Research Centre at the University of Edin-
burgh, Kevin Humphreys of the Centre for Cognitive Science at the University of
Edinburgh, and Mike Reape, of the Computer Science Department, Trinity Col-
lege, Dublin.

As of this release, Pleuk will not work under SICStus 3.0 or later.
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Appendix A

Sample Grammars

1.1 English Syllabification Grammar

% Signature

% =========

bot sub [unit,list,segment].

unit sub [cluster,syllable,word]

intro [first:segment,

last:segment].

cluster sub [consonant_cluster, vowel_cluster]

intro [segments:list_segment].

consonant_cluster sub [onset,coda].

onset sub [].

coda sub [].

vowel_cluster sub [].

syllable sub []

intro [syllable:list_segment].

word sub []

intro [syllables:list_list_segment].

segment sub [consonant,vowel].

consonant sub [sibilant,obstruent,nasal,liquid,glide].

sibilant sub [s,z].

s sub [].

z sub [].

obstruent sub [p,t,k,b,d,g].

p sub [].

t sub [].

k sub [].

b sub [].

d sub [].

g sub [].

nasal sub [n,m].

n sub [].

m sub [].
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liquid sub [l,r].

l sub [].

r sub [].

glide sub [y,w].

y sub [].

w sub [].

vowel sub [a,e,i,o,u].

a sub [].

e sub [].

i sub [].

o sub [].

u sub [].

list sub [e_list,ne_list,list_segment,list_list_segment].

e_list sub [].

ne_list sub [ne_list_segment,ne_list_list_segment]

intro [hd:bot,

tl:list].

list_segment sub [e_list,ne_list_segment].

ne_list_segment sub []

intro [hd:segment,

tl:list_segment].

list_list_segment sub [e_list,ne_list_list_segment].

ne_list_list_segment sub []

intro [hd:list_segment,

tl:list_list_segment].

% Rules

% =====

word_schema_rec rule

(word,

syllables:[Syllable|Syllables],

first:First1,

last:Last2)

===>

cat> (syllable,

syllable:Syllable,

first:First1,

last:Last1),

cat> (word,

syllables:Syllables,

first:First2,

last:Last2),

goal> (\+ less_sonorous(Last1,First2)).

word_schema_base rule

(word,
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syllables:[Syllable],

first:First,

last:Last)

===>

cat> (syllable,

syllable:Syllable,

first:First,

last:Last).

v_syllable rule

(syllable,

syllable:[Vowel],

first:Vowel,

last:Vowel)

===>

cat> (vowel,Vowel).

vc_syllable rule

(syllable,

syllable:[Vowel|Segs1],

first:Vowel,

last:Last)

===>

cat> (vowel,Vowel),

cat> (coda,

segments:Segs1,

last:Last).

cv_syllable rule

(syllable,

syllable:Segs,

first:First,

last:Vowel)

===>

cat> (onset,

segments:Segs1,

first:First),

cat> (vowel,Vowel),

goal> append(Segs1,[Vowel],Segs).

cvc_syllable rule

(syllable,

syllable:Segs,

first:First,

last:Last)

===>

cat> (onset,

segments:Segs1,
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first:First),

cat> (vowel,Vowel),

cat> (coda,

segments:Segs2,

last:Last),

goal> append(Segs1,[Vowel|Segs2],Segs).

consonant_cluster_base rule

(consonant_cluster,

segments:[Consonant],

first:Consonant,

last:Consonant)

===>

cat> (consonant,Consonant).

onset rule

(onset,

segments:[Consonant1|Consonants],

first:Consonant1,

last:Consonant3)

===>

cat> (consonant,Consonant1),

cat> (onset,

segments:Consonants,

first:Consonant2,

last:Consonant3),

goal> less_sonorous(Consonant1,Consonant2).

coda rule

(coda,

segments:[Consonant1|Consonants],

first:Consonant1,

last:Consonant3)

===>

cat> (consonant,Consonant1),

cat> (coda,

segments:Consonants,

first:Consonant2,

last:Consonant3),

goal> less_sonorous(Consonant2,Consonant1).

% Lexicon

% =======

p ---> p.

t ---> t.

k ---> k.



122 APPENDIX A. SAMPLE GRAMMARS

b ---> b.

d ---> d.

g ---> g.

s ---> s.

z ---> z.

n ---> n.

m ---> m.

l ---> l.

r ---> r.

y ---> y.

w ---> w.

a ---> a.

e ---> e.

i ---> i.

o ---> o.

u ---> u.

% Definite Clauses

% ================

less_sonorous_basic(sibilant,obstruent) if true.

less_sonorous_basic(obstruent,nasal) if true.

less_sonorous_basic(nasal,liquid) if true.

less_sonorous_basic(liquid,glide) if true.

less_sonorous_basic(glide,vowel) if true.

less_sonorous(L1,L2) if

less_sonorous_basic(L1,L2).

less_sonorous(L1,L2) if

less_sonorous_basic(L1,L3),

less_sonorous(L3,L2).

append([],Xs,Xs) if true.

append([X|Xs],Ys,[X|Zs]) if

append(Xs,Ys,Zs).
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1.2 Categorial Grammar with Cooper Storage

% Signature

% =========

bot sub [cat,synsem,syn,sem_obj,list_quant].

cat sub []

intro [synsem:synsem,

qstore:list_quant].

synsem sub [functional, basic].

functional sub [forward,backward]

intro [arg:synsem,

res:synsem].

forward sub [].

backward sub [].

basic sub []

intro [syn:syn, sem:sem_obj].

syn sub [np,s,n].

np sub [].

s sub [].

n sub [].

sem_obj sub [individual, proposition, property].

individual sub [j,m].

j sub [].

m sub [].

property sub []

intro [ind:individual,

body:proposition].

proposition sub [logical,quant,run,hit,nominal].

logical sub [and,or].

and sub []

intro [conj1:proposition,

conj2:proposition].

or sub []

intro [disj1:proposition,

disj2:proposition].

quant sub [every,some]

intro [var:individual,

restr:proposition,

scope:proposition].

every sub [].

some sub [].

run sub []

intro [runner:individual].

hit sub []

intro [hitter:individual,

hittee:individual].

nominal sub [kid,toy,big,red]
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intro [arg1:individual].

kid sub [].

toy sub [].

big sub [].

red sub [].

list_quant sub [e_list, ne_list_quant].

e_list sub [].

ne_list_quant sub []

intro [hd:quant,

tl:list_quant].

% Lexicon

% =======

kid --->

@ cn(kid).

toy --->

@ cn(toy).

big --->

@ adj(big).

red --->

@ adj(red).

every --->

@ gdet(every).

some --->

@ gdet(some).

john --->

@ pn(j).

runs --->

@ iv((run,runner:Ind),Ind).

hits --->

@ tv(hit).

% Grammar

% =======

forward_application rule
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(synsem:Z,

qstore:Qs)

===>

cat> (synsem:(forward,

arg:Y,

res:Z),

qstore:Qs1),

cat> (synsem:Y,

qstore:Qs2),

goal> append(Qs1,Qs2,Qs).

backward_application rule

(synsem:Z,

qstore:Qs)

===>

cat> (synsem:Y,

qstore:Qs1),

cat> (synsem:(backward,

arg:Y,

res:Z),

qstore:Qs2),

goal> append(Qs1,Qs2,Qs).

s_quantifier rule

(synsem:(syn:s,

sem:(Q,

scope:Phi)),

qstore:QsRest)

===>

cat> (synsem:(syn:s,

sem:Phi),

qstore:Qs),

goal> select(Qs,Q,QsRest).

% Macros

% ======

cn(Pred) macro

synsem:(syn:n,

sem:(body:(Pred,

arg1:X),

ind:X)),

@ quantifier_free.
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gdet(Quant) macro

synsem:(forward,

arg: @ n(Restr,Ind),

res: @ np(Ind)),

qstore:[@ quant(Quant,Ind,Restr)].

quant(Quant,Ind,Restr) macro

(Quant,

var:Ind,

restr:Restr).

adj(Rel) macro

synsem:(forward,

arg: @ n(Restr,Ind),

res: @ n((and,

conj1:Restr,

conj2:(Rel,

arg1:Ind)),

Ind)),

@ quantifier_free.

n(Restr,Ind) macro

syn:n,

sem:(body:Restr,

ind:Ind).

np(Ind) macro

syn:np,

sem:Ind.

pn(Name) macro

synsem: @ np(Name),

@ quantifier_free.

iv(Sem,Arg) macro

synsem:(backward,

arg: @ np(Arg),

res:(syn:s,

sem:Sem)),

@ quantifier_free.

tv(Rel) macro

synsem:(forward,

arg:(syn:np,

sem:Y),

res:(backward,

arg:(syn:np,

sem:X),
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res:(syn:s,

sem:(Rel,

hitter:X,

hittee:Y)))),

@ quantifier_free.

quantifier_free macro

qstore:[].

% Definite Clauses

% ================

append([],Xs,Xs) if

true.

append([X|Xs],Ys,[X|Zs]) if

append(Xs,Ys,Zs).

select([Q|Qs],Q,Qs) if

true.

select([Q1|Qs1],Q,[Q1|Qs2]) if

select(Qs1,Q,Qs2).
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1.3 Simple Generation Grammar

% An implementation in {\sc ale} of the grammar in Shieber & al,

% "Semantic-Head-Driven Generation", CL 16-1, 1990.

% Signature

% =========

bot sub [pred, list, sem, form, agr, sign].

pred sub [decl, imp, love, call_up, leave, see, john, mary, mark,

friends, often, friend, up, you, i].

decl sub []. imp sub [].

leave sub []. love sub []. call_up sub []. see sub [].

john sub []. mary sub []. mark sub [].

friends sub []. friend sub [].

often sub []. up sub [].

you sub []. i sub [].

list sub [e_list, ne_list, arg_list, subcat_list].

e_list sub [].

ne_list sub [arg_ne_list, subcat_ne_list]

intro [hd:bot, tl:list].

arg_list sub [e_list, arg_ne_list].

arg_ne_list sub [] intro [hd:sem, tl:arg_list].

subcat_list sub [e_list, subcat_ne_list].

subcat_ne_list sub [] intro [hd:sign, tl:subcat_list].

sem sub [] intro [pred:pred, args:arg_list].

form sub [finite, nonfinite].

finite sub [].

nonfinite sub [].

agr sub [sg1, sg2, sg3, pl1, pl2, pl3].

sg1 sub []. sg2 sub []. sg3 sub [].

pl1 sub []. pl2 sub []. pl3 sub [].

sign sub [sentence, verbal, np, adv, p]

intro [sem:sem].

sentence sub [].

verbal sub [s, vp] intro [form:form].

s sub [].

vp sub [] intro [subcat:subcat_list].

np sub [det, n]

intro [agr:agr, arg:sem].

det sub [] intro [np_sem:sem].

n sub [].

adv sub [] intro [varg:sem].

p sub [].

ext([sg1,sg2,sg3,pl1,pl2,pl3]).

% Lexicon

% =======
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love --->

vp, form:nonfinite,

subcat:[(np,sem:Obj),(np,sem:Subj)],

sem:(pred:love,args:[Subj,Obj]).

call --->

vp, form:nonfinite,

subcat:[(np,sem:Obj),(p,sem:(pred:up,args:[])),(np,sem:Subj)],

sem:(pred:call_up,args:[Subj,Obj]).

call --->

vp, form:nonfinite,

subcat:[(p,sem:(pred:up,args:[])),(np,sem:Obj),(np,sem:Subj)],

sem:(pred:call_up,args:[Subj,Obj]).

leave --->

vp, form:nonfinite,

subcat:[(np,sem:Subj)],

sem:(pred:leave,args:[Subj]).

see --->

vp, form:nonfinite,

subcat:[(np,sem:Obj),(np,sem:Subj)],

sem:(pred:see,args:[Subj,Obj]).

see --->

vp, form:nonfinite,

subcat:[(s,form:finite,sem:Obj),(np,sem:Subj)],

sem:(pred:see,args:[Subj,Obj]).

john --->

np, agr:sg3, sem:(pred:john,args:[]).

mary --->

np, agr:sg3, sem:(pred:mary,args:[]).

mark --->

np, agr:sg3, sem:(pred:mark,args:[]).

friends --->

np, agr:pl3, sem:(pred:friends,args:[]).

friend --->

n, agr:sg3, arg:X, sem:(pred:friend,args:[X]).

i --->

np, agr:sg1, sem:(pred:i,args:[]).
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you --->

np, agr:sg2, sem:(pred:you,args:[]).

often --->

adv, varg:VP, sem:(pred:often,args:[VP]).

up --->

p, sem:(pred:up,args:[]).

% Lexical Rules

% =============

sg3 lex_rule (vp, form:nonfinite, subcat:Subcat, sem:Sem) **>

(vp, form:finite, subcat:NewSubcat, sem:Sem)

if add_sg3(Subcat,NewSubcat)

morphs (X,y) becomes (X,i,e,s),

X becomes (X,s).

non_sg3 lex_rule (vp, form:nonfinite, subcat:Subcat, sem:Sem) **>

(vp, form:finite, subcat:NewSubcat, sem:Sem)

if add_nonsg3(Subcat,NewSubcat)

morphs X becomes X.

% Grammar Rules

% =============

sentence1 rule

(sentence,sem:(pred:decl,args:[S])) ===>

cat> (s,form:finite,sem:S).

sentence2 rule

(sentence,sem:(pred:imp,args:[S])) ===>

cat> (vp,form:nonfinite,

subcat:[(np,sem:(pred:you,args:[]))],sem:S).

s rule

(s,form:Form,sem:S) ===>

cat> Subj,

sem_head> (vp,form:Form,subcat:[Subj],sem:S).

vp1 rule

(vp,form:Form,subcat:Subcat,sem:S) ===>

sem_head> (vp,form:Form,subcat:[Compl|Subcat],sem:S),

cat> Compl.
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vp2 rule

(vp,form:Form,subcat:[Subj],sem:S) ===>

cat> (vp,form:Form,subcat:[Subj],sem:VP),

sem_head> (adv,varg:VP,sem:S).

% Semantics Directive

% ====================

semantics sem1.

% Definite Clauses

% ================

sem1(sem:S,S) if true.

add_sg3([(np,sem:Sem)],[(np,agr:sg3,sem:Sem)]) if !, true.

add_sg3([Cat|Cats],[Cat|NewCats]) if add_sg3(Cats,NewCats).

add_nonsg3([(np,sem:Sem)],[(np,agr:(=\=sg3),sem:Sem)]) if !, true.

add_nonsg3([Cat|Cats],[Cat|NewCats]) if add_nonsg3(Cats,NewCats).
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Error and Warning Messages

2.1 Error Messages

a /1 atom declared subsumed by type T

Subsumption over a /1 atoms has a fixed definition. Subtyping speci-
fications with a /1 atoms are not allowed.

add to could not unify FS1 and FS2

The unification between feature structures FS1 and FS2 failed.

add to could not unify paths � and � in FS

The unification between paths � and � failed in feature structure FS
failed.

add to could not inequate FS1 and FS2

The inequation between features structures FS1 and FS2 could not
been satisfied.

add to could not add feature F to FS

The value of feature F is not unifiable with the similar value in feature
structure FS.

add to could not add undefined macro M to FS

Macro M used in feature structure FS is undefined.

add to could not add incompatible type T to FS

Type T is not compatible with the type of feature structure FS.

add to could not add undefined type T to FS

Type T in feature structure FS is undefined.

add to could not add ill formed complex description D to FS

132
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DescriptionD is ill formed and could not be unified with feature struc-
ture FS

appropriateness cycle following path � from type T

There is a sequence of features � which must be defined for objects of
type T where the value must be of type T .

bot has appropriate features

The most general type, ?, cannot have any appropriate features.

bot has constraints

The most general type, ?, must not have cons constraints.

cats> value with sort S is not a valid list argument

An argument of cats> was detected at run-time, which is not of a type
subsumed by list.

consistent T1 and T2 have multiple mgus Ts

Types T1 and T2 have the non singleton set Ts as their set of most gen-
eral unifiers.

constraint declaration given for atom

a /1 atoms must not have cons constraints.

description uses unintroduced feature F

A description uses the feature F which has not been defined as appro-
priate for any types.

edge/2: arguments must be non-negative

The arguments to edge/2 represent nodes in a parsing chart, and thus
must be non-negative integers.

edge/2: first argument must be < second argument

The arguments to edge/2 represent nodes in a parsing chart. Edges
only span from one node to an equal or greater valued node. edge/2
shows edges where the other node has a greater value. empty/0 shows
edges where the node has an equal value.

extensional type E is not maximal

Type E is declared extensional but does not observe the maximality
restriction.

feature F multiply introduced at Ts
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The feature F is introduced at the types in Ts, which are not compa-
rable with one another.

illegal variable occurence in T sub Ss (intro FRs)

In subtype/feature specifications, neither T or any of the types in Ss
or FRs, or any of the features in FRs can be unbound variables. If a
value restriction is an a /1 atom, that atom can be unbound, or con-
tain unbound variables, but the a /1 operator must still appear.

incompatible restrictions on feature F at type T are Ts

The inherited restrictions, consisting of types Ts, on the value of F at
type T are not consistent.

invalid line � in rule

A line of a grammar rule is neither a goal nor a category description.

lexical rule LR lacks morphs specification

The obligatory morphs part of lexical rule LR is missing.

multiple constraint declaration error for T

More than one cons declaration exists for type T .

multiple feature specifications for type T

The appropriate features of T can be introduced along with subtyping
or by themselves, but there can only be one declaration of appropriate
features.

multiple specification for F in declaration of T

More than one restriction on the value of feature F is given in the def-
inition of type T .

no lexical entry for W

Expression W is used, but has no lexical entry.

pathval: illegal path specified - �

Path � is not a valid path specification for the given feature structure.

rule R has multiple sem head> specifications

More than one semantic head declaration was found in grammar rule
R.
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rule R has no cat> cats> or sem head> specification

The grammar rule named R is empty in that it does not have any
daughter specification.

rule R has wrongly placed sem goal> specifications

A sem goal> specification occurs somewhere other than immediately
before or immediately after a sem head> specification in rule R.

subtype/feature specification given for a /1 atom

Subsumption over a /1 atoms has a fixed definition, and they can
have no features. Subtype or feature specifications for them are not
allowed.

subtyping cycle at T

The subsumption relation specified is not anti-symmetric. It can be
inferred that the type T is a proper subtype of itself.

subtype T1 used in T2 undeclared

Undefined type T1 declared as subtype in definition of T2.

T multiply defined

There is more than one definition of type T .

T subsumes bot

T is declared as subsuming the most general type, ?.

T1 used in appropriateness definition of T2 undeclared

Undefined type T1 used as value restriction in definition of T2.

undefined macro M used in description

A description uses a macro which is not defined.

undefined type T used in description

A description uses a type T which is not defined.

undefined feature F used in path �

A path � of features uses undefined feature F in a description.

unsatisfiable lexical entry for W

Word W has a lexical entry which has no satisfying feature structure.

upward closure fails for F in S1 and S2

S1 subsumes S2, but the value restriction for F at S1 does not sub-
sume the value restriction for F at S2.
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2.2 Warning Messages

=@ accessible by procedural attachment calls from constraint for T

The built-in =@ predicate (extensional identity check) is non-
monotonic, so its use should be avoided in constraints attached to
types.

atom a /1 Atom is ground in declaration of T

One of the appropriate features of T has a value restriction that is a
ground a /1 atom. Every feature structure of type T will have the same
value at this feature.

homomorphism condition fails for F in T1 and T2

It is not the case that the appropriateness restriction on the type T =
T1 + T2 is the unification of the appropriateness restrictions on T1 and
T2.

lexical description for W is unsatisfiable

Incompatibilities in the lexical description for word W could not pro-
duce a satisfying feature structure.

no chain rules found

All the grammar rules in the program were non-chain rules (no se-
mantic heads).

no definite clauses found

There were no definite clause rules specified in the program.

no features introduced

There are no appropriate features for any types.

no functional descriptions found

There are no functional description definitions in the program.

no lexical rules found

There were no lexical rules specified in the program.

no lexicon found

There were no lexical entries specified in the program.

no non chain rules found
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All the grammar rules in the program were chain rules (with semantic
heads).

no P definite clause found

A definition for definite clause predicate P , which was declared as the
semantics predicate, was not found in the program.

no phrase structure rules found

There were no phrase structure rules specified in the program.

no semantics specification found

There was no specification of the semantics definite clause predicate
in the program.

no types defined

There were no sub or intro declarations found in the program.

unary branch from T1 to T2

The only subtype of T1 is T2. In this situation, it is usually more effi-
cient to elimate T1 if every instance of T1 is a T2.
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BNF for ALE

<desc> ::= <type>

| <variable>

| (<feature>:<desc>)

| (<desc>,<desc>)

| (<desc>;<desc>)

| @ <macro_spec>

| <func_spec>

| a_ <prolog_term>

| <path> == <path>

| =\= <desc>

<type> ::= <prolog_functor>

<feature> ::= <prolog_atom>

<path> ::= list(<feature>)

<macro_def> ::= <macro_head> macro <desc>.

<macro_head> ::= <macro_name>

| <macro_name>(<seq(var)>)

<macro_spec> ::= <macro_name>

| <macro_name>(<seq(desc)>)

<func_def> ::= <func_spec> +++> <desc>.

<func_spec> ::= <func_name>

| <func_name>(<seq(desc)>)

<clause> ::= <literal> if <goal>.

<literal> ::= <pred_sym>

| <pred_sym>(<seq(desc)>)
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<cut_free_goal> ::= true

| <literal>

| prolog(<prolog_goal>)

| (<cut_free_goal>,<cut_free_goal>)

| (<cut_free_goal>;<cut_free_goal>)

| (<desc> =@ <desc>)

| (<cut_free_goal> -> <cut_free_goal>)

| (<cut_free_goal> -> <cut_free_goal>

; <cut_free_goal>)

| (\+ <cut_free_goal>)

<goal> ::= true

| <literal>

| prolog(<prolog_goal>)

| (<goal>,<goal>)

| (<goal>;<goal>)

| (<desc> =@ <desc>)

| (<cut_free_goal> -> <goal>)

| (<cut_free_goal> -> <goal> ; <goal>)

| !

| (\+ <goal>)

| when(<cond>,<goal>)

<cond> ::= <variable>^(<cond>)

| <quantified_cond>

<quantified_cond> ::= <quantified_cond>, <quanitifed_cond>

| <quantified_cond> ;<quanitifed_cond>

| <variable>=<cond_desc>

<cond_desc> ::= <variable>

| <type>

| max(<type>)

| <feat>:<cond_desc>

| <path> == <path>

| <cond_desc>, <cond_desc>

| <cond_desc> ;<cond_desc>

<lex_entry> ::= <word> ---> <desc>.

<rule> ::= <rule_name> rule <desc> ===> <rule_body>.

<rule_body> ::= <sem_less_rule_body>

| <sem_less_rule_body>,<sem_rule_body>,

<sem_less_rule_body>



140 APPENDIX C. BNF FOR ALE

<sem_less_rule_body> ::= <rule_clause>

| <rule_clause>, <sem_less_rule_body>

<rule_clause> ::= cat> <desc>

| cats> <desc>

| goal> <goal>

<sem_rule_body> ::= sem_head> <desc>

| sem_goal> <goal>, sem_head> <desc>

| sem_head> <desc>, sem_goal> <goal>

| sem_goal> <goal>, sem_head> <desc>,

sem_goal> <goal>

<lex_rule> ::= <lex_rule_name> lex_rule <lex_rewrite>

morphs <morphs>.

<lex_rewrite> ::= <desc> **> <desc>

| <desc> **> <desc> if <goal>

<morphs> ::= <morph>

| <morph>, <morphs>

<morph> ::= (<string_pattern>) becomes (<string_pattern>)

| (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>

<string_pattern> ::= <atomic_string_pattern>

| <atomic_string_pattern>, <string_pattern>

<atomic_string_pattern> ::= <atom>

| <var>

| <list(<var_char>)>

<var_char> ::= <char>

| <var>

<seq(X)> ::= <X>

| <X>, <seq(X)>

<empty_prod> ::= empty <desc>.

<type_spec> ::= <type> sub <list(<type>)>.

| <type> sub <list(<type>)>

intro <list(<frestr_spec>)>.

| <type> intro <list(<frestr_spec>)>.

<frestr_spec> ::= <feature>:<type>

| <feature>: a_ <prolog_term>
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<cons_spec> ::= <type> cons <desc>.

| <type> cons <desc>

goal <goal>.

<ext_spec> ::= ext(list(<type>)).

<prog> ::= <prog_line>

| <prog_line> <prog>

<prog_line> ::= <type_spec>

| <ext_spec>

| <cons_spec>

| <macro_def>

| <empty_prod>

| <clause>

| <rule>

| <lex_entry>

| <lex_rule>
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T3.1 BNF for TRALE

The same as ALE except:

<cons_spec> ::= <type> cons <desc>

| <type> cons <desc>

goal <goal>

| <cond_desc> *> <desc>

| <cond_desc> *> <desc>

goal <goal>

<macro_def> ::= <macro_head> macro <desc>.

| <macro_head> := <desc>.

In addition, when the topological parser is loaded:

<rule> ::= <topo-rule>

| <linking-rule>

| <matches-rule>

| <matched-by-rule>

| <bidirectional-matching>

| <covers-rule>

| <covered-by-rule>

| <bidirectional-covering>

| <compaction-rule>

| <tecto-rule>

<topo-rule> ::= <region> topo <list(<field>)>.

<linking-rule> ::= <region> <<-- <field>.

| <region> <<-- (<field-disj>).

| <field> -->> <region>.

| <field> -->> (<region-disj>).

<field> ::= <atom>

<region> ::= <atom>

| matrix

<field-disj> ::= <field>

| <field> ; <field-disj>

<region-disj> ::= <region>

| <region> ; <region-disj>

<matches-rule> ::= <conj-desc> matches <field-or-region>.

| <conj-desc> matches (<fields-or-regions>).
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<conj-desc> ::= <type>

| <variable>

| (<feature>:<desc>)

| (<desc>,<desc>)

| @ <macro_spec>

| <func_spec>

| a_ <prolog_term>

| <path> == <path>

| =\= <desc>

<field-or-region> ::= <field>

| <region>

<fields-or-regions> ::= <field-or-region>

| <field-or-region> ; <fields-or-regions>

<matched-by-rule> ::= <field-or-region> matched_by <desc>.

<bidirectional-matching> ::= <conj-desc> <==> <field-or-region>.

<covers-rule> ::= <conj-desc> covers (<fields-or-regions>).

<covered-by-rule> ::= <field-or-region> covered_by (<desc>).

<bidirectional-covering> ::= <conj-desc> <--> <field-or-region>.

<compaction-rule> ::= compacts( <list(<desc>)> ).

<tecto-rule> ::= <desc> *--> <list(<desc>)>.

| <desc> *--> [ <seq(<desc>)> , {<conditions>}].

<conditions> ::= <condition>

| (<conditions>, <conditions>)

| (<conditions>; <conditions>)

<condition> ::= <local-covers>

| <local-matches>

| <precedence>

| <immediate-precedence>

| <local-compaction>

| <prolog_goal>

<local-covers> ::= <non-zero-index> covers <field-or-region>

<local-matches> ::= <non-zero-index> matches <field-or-region>

<precedence> ::= <non-zero-index> < <non-zero-index>
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<immediate-precedence> ::= <non-zero-index> << <non-zero-index>

<local-compaction> ::= compacts(<index>)
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Reference Card

Grammar

----------------------------------------------------------------------

Type sub Subtypes (intro [F1:R1,...,Fn:Rn]). (Subtyping)

Type intro [F1:R1,...,Fn:Rn]. (Appropriateness)

ext([Type1,...,Typen]). (Extensionality)

(Types not otherwise declared, but used in the above definitions are

assumed to be maximal and/or immediately subsumed by bot)

Type cons Desc (Type Constraint)

(goal Goal).

Word ---> Desc. (Lexical Entry)

empty Desc. (Empty Category)

RuleName lex_rule DescIn **> DescOut (Lexical Rule)

(if Goal)

morph X becomes [X,e,s]

when PrologGoal.

RuleName rule Desc ===> (Phrase Structure Rule)

cat> Desc/ [Daughter]

cats> ListDesc/ [List of Daughters]

sem_head> Desc/ [Semantic Head]

goal> Goal/ [Procedural Attachment]

sem_goal> Goal. [P.A. to Semantic Head]

f(Desc1,...,Descn) if g(Desc1,...,Descn)/ (Definite Clause)

Desc1 =@ Desc2/ (Extensionality Check)

prolog(PrologGoal). (Prolog Hook)

fun(Desc1,...,Descn) +++> DescResult. (Function Declaration)

macro(X1,...,Xn) macro Desc. (Macro Declaration)

semantics Pred. (Semantic Pred. Declaration)
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Compile-time Options

----------------------------------------------------------------------

| ?- parse/generate/parse_and_gen. (Compilation Mode)

| ?- lex_consult/lex_compile. (Lexicon Compilation Mode)

| ?- (no)adderrs. (Toggle Description Errors)

| ?- (no)subtest. (Toggle Subsumption Check)

| ?- chain_length(Num). (Chain Rule Length Bound)

| ?- lex_rule_depth(Num). (Lexical Rule Depth Bound)

Compilation

----------------------------------------------------------------------

| ?- (d)compile_gram(GramFile). (Grammar Compilation)

| ?- update_lex(File). (Incremental Lexicon Update)

| ?- retract(all)_lex. (Incremental Lexicon Retraction)

Grammar Inspection

----------------------------------------------------------------------

| ?- (no_)write_type(s). (Type Hiding/Showing)

| ?- (no_)write_feat(s). (Feature Hiding/Showing)

| ?- show_type Type. (Signature Inspection)

| ?- unify_type(Type1,Type2,LUB). (Type Unification)

| ?- approp(Feat,Type,Restr). (Appropriateness Inspection)

| ?- introduce(Feat,Type). (Feature Introduction)

| ?- iso_desc(Desc1,Desc2). (Extensional Identity)

| ?- mgsat Desc. (Most General Satisfier)

| ?- show_clause PredName(/Arity). (Definite Clause)

| ?- lex Word. (Lexical Entry)

| ?- rule Rulename. (Phrase Structure Rule)

| ?- empty. (Empty Category)

| ?- macro Macro. (Macro Definition)

| ?- lex_rule Lexrulename. (Lexical Rule)

| ?- export_words(Stream,Delim). (Lexicon Export)

Execution

----------------------------------------------------------------------

| ?- (d)rec WordList. (Bottom-up Parsing)

| ?- (d)query Query. (SLD Resolution)

| ?- (d)gen Desc. (Head-Driven Generation)

Run-time Options

----------------------------------------------------------------------

| ?- (no)interp. (Toggle Mini-Interpreter)

| ?- edge(Left,Right). (Chart Edge Inspection)

| ?- dleash(+/-Kind). (Port Leashing)

| ?- dskip(+/-Kind). (Port Auto-Skipping)

| ?- dclear_bps. (Breakpoint Clearing)
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