
TRALE Reference Manual

DRAFT

Mohammad Haji-Abdolhosseini Gerald Penn
Dept. of Linguistics Dept. of Computer Science
University of Toronto University of Toronto
130 St. George St. Room 6076 10 King’s College Rd.
Toronto M5S 3H1 Toronto M5S 3G4
Ontario, Canada Ontario, Canada
mhaji@chass.utoronto.ca gpenn@cs.toronto.edu

c2003, Mohammad Haji-Abdolhosseini and Gerald Penn
(except in extensions as indicated)

Contents

1 ALE Data Structure 1
1.1 Path Compression . 2
1.2 Unification Algorithm . 3

2 Signature files T4-1
T2.1 Signature Input Format . T4-1

3 Signature Compilation 5
3.1 Subsumption Matrices and Transitive Closure 5
3.2 Monoids, Rings, Quasi-Rings, and Semirings 7
3.3 Topological Sorting . 8
3.4 Zero-Counting by Quadrants 8
3.5 Prolog Representation of ZCQ Matrices 10
3.6 Transitive Closure with ZCQ 11
3.7 Compiling Appropriateness Conditions 12

3.7.1 Feature Introduction 13
3.7.2 Value Restriction Consistency 17
3.7.3 Appropriateness Cycles 18
3.7.4 Join Preservation Condition 19

3.8 Subtype Covering . 20
3.8.1 Computing maxcount of each type 21
3.8.2 Classifying Deranged Types 22

4 Description Compilation 25
4.1 Serialization . 26
4.2 Sorting . 27
4.3 Peephole Optimization . 31
4.4 Code Generation . 31
4.5 ALE Lexical Rule Compilation 33

ii CONTENTS

5 Logical Variable Macro Compilation 35

6 Co-routining 37

7 Complex-Antecedent Constraint Compilation 41

8 TRALE Lexical Rule Compiler T43-1
T8.1 Introduction . T43-1

T8.1.1 Background . T43-1
T8.1.2 The lexical rule compiler T43-2

T8.2 Step One: Generating Frames T43-4
T8.2.1 Disjunction in the input and output specifications . T43-5
T8.2.2 Interpreting lexical rule descriptions T43-6
T8.2.3 Overview of code for frame generation T43-9

T8.3 Step Two: Global Lexical Rule Interaction T43-10
T8.4 Step Three: Word Class Specialization T43-11
T8.5 Step Four: Definite Relations T43-11

9 Bottom-up Parsing 45
9.1 The Algorithm . 45
9.2 EFD-closure . 49
9.3 Parsing Complexity . 52

10 Topological Parsing 53
10.1 Phenogrammar . 54

10.1.1 Linkage . 55
10.2 Tectogrammar . 56
10.3 Synchronising Phenogrammar and Tectogrammar 57

10.3.1 Covering . 57
10.3.2 Matching . 58
10.3.3 Splicing . 59
10.3.4 Compaction . 59
10.3.5 Precedence and Immediate Precedence Constraints 60
10.3.6 Topological Accessibility 61

10.4 Phenogrammatical Parsing 61
10.5 Tectogrammatical Parsing 64

10.5.1 Category Graphs and Head Chains 64
10.5.2 Bit Vector Lattices . 68

CONTENTS iii

11 Generation 73
11.1 The Algorithm . 73
11.2 Pivot Checking . 76

12 SLD Resolution 81

Chapter 1

ALE Data Structure

Internally, ALE represents a feature structure as a term of the form
Tag-Sort(V1,...,Vn) where Tag represents the token identity of the
structure using a Prolog variable, Sort is the name of the type of the struc-
ture. The terms V1 through Vn are the values for the features F1 through Fn

that are appropriate for the type Sort. The features are sorted alphabet-
ically based on their names in V1...Vn. This results in the kind of record
structure presented in Figure 1.1 for feature structures.

-

Tag

. �! Sort

. �!V1

..

..

. �!Vn

Figure 1.1: Internal representation of Tag-Sort(V1,...Vn)

When a type is promoted, Tag is replaced with a new pair of
Tag-Sort(V1,...,Vm)with m possibly larger than n in order to make room
for any new features introduces by the new type. For example, given the
type signature in Figure 1.2, the internal ALE representation of the feature
structure in (1) will be (2).

(1)
2
664

head
MOD plus

PRD minus

3
775

2 ALE Data Structure

adj noun
CASE:case

nom acc plus minus subst

case bool head
MOD:bool
PRD:bool

?

Figure 1.2: A sample type signature

(2) Tag-head(X-plus,Y-minus)

But when this type is promoted to noun, the ALE representation of that
type is updated to (3).

(3) Tag2-noun(Z-case,X-plus,Y-minus)-head(X-plus, Y-minus)

Note that in this example, the variable Tag of (2) has been bound to
Tag2-noun(Z-case,X-plus,Y-minus) in (3), and now we have a new tag
(Tag2) at the beginning of the reference chain. The positional encoding of
feature values in this manner means that, at compile time, we know which
features any two types have.

1.1 Path Compression

As feature structures get updated, reference chains get very long with
certain signatures and thus may become slower to process. ALE reme-
dies this situation by performing an operation called path compres-
sion to reduce the size of reference chains before an edge is added
to a chart and before a feature structure is output to the user. The
predicate fully_deref/4 is responsible for path compression. In
fully_deref(RefIn,SVsIn,RefOut,SVsOut), RefIn and SVsIn are the in-
put reference (or Tag) and sort values respectively, and RefOut and SVsOut

will be the output reference and sort values. The path compression algo-
rithm of fully_deref/4 is described in Table 1.1.

As an example, consider the following:

1.2 Unification Algorithm 3

Condition Action
RefIn is a variable RefIn = fully(RefOut,SVsOut)-SVsOut,

run fully_deref/4 on arguments of RefIn
RefIn is not a variable if RefIn == fully(Ref,_), then this means

that RefIn has already been processed by
fully_deref/4; thus, RefOut = Ref and
SVsOut = SVs

if RefIn == Ref-SVs, then call
fully_deref(Ref,SVs,RefOut,SVsOut).

Table 1.1: Path-compression algorithm

| ?- fully_deref(Tag1-s1(Tag2-t2-t3,Tag3-t4-t5),

SVsIn,TagOut,SVsOut).

Tag1 = fully(TagOut,s1(_A-t2,_B-t4))-s1(_A-t2,_B-t4),

Tag2 = fully(_A,t2)-t2,

Tag3 = fully(_B,t4)-t4,

SVsOut = s1(_A-t2,_B-t4)

The result of running path-compression on

Tag1-s1(Tag2-t2-t3,Tag3-t4-t5)

is TagOut-SVsOut. The reason for using fully/2 is that we want to know
if a path has already been compressed or not due to cycles in the feature
structure that it represents.

1.2 Unification Algorithm

ALE uses the Martelli-Montanari algorithm, which is a variation of the
union algorithm for union-find data structures. The Martelli-Montanari
algorithm operates on a finite set of equations

E = fs1 = t1; : : : ; sn = tng

and a substitution �. Initially E = fs = tg, where s and t are the terms
to be unified, and � = ;. Then the algorithm chooses from E an arbitrary
equation and performs acts according to the following rules:

4 ALE Data Structure

Equation from E Action
1 f(s1; : : : ; sn) = f(t1; : : : ; tn) replace by the equations s1 =

t1; : : : ; sn = tn
2 f(s1; : : : ; sn) = g(t1; : : : ; tn) fail
3 X = X delete equation
4 X = t or t = X where X does

not occur in t
add X � t to �, apply the
substitution fX � tg to E
and the term in �

5 X = t or t = X where X oc-
curs in t andX 6= t

fail

The above procedure is repeated untilE becomes empty, or the procedure
fails.

Feature structure unification in ALE is done by ud/2 predicate, which
first dereferences the two feature structures to be unified getting the most
recent term encoding of the feature structure together with its tag, and
then it runs the Martelli-Montanari algorithm on the term encodings.

Chapter 2

Signature files

W. Detmar Meurers, Ohio State University
Thilo Götz, Dale Gerdemann, Eberhard-Karls-Universität Tübingen 1

T2.1 Signature Input Format

The input to the signate is one or more files containing information about
a type hierarchy and the appropriateness conditions. Syntactically, a
type hierarchy (or a fragment of it) is everything between the key word
type_hierarchy and a period (.) each being the sole contents of an oth-
erwise blank line. The first hierarchy, which may be the only one, must al-
ways begin with the type bot as the first word in the first informative line
following type_hierarchy. (Of course there may be empty lines or com-
ment lines lying between them.) The following lines consist of regularly
indented lines each containing one type and optionally its appropriate-
ness conditions. Here is a small example:

type_hierarchy

bot

s1 f:t1

s4 f:t4

s2 f:t2

s4

s3 f:t3

s4

t1

t4

1 c2003, Detmar Meurers, Thilo Götz and Dale Gerdemann.

T4-2 Signature files

t2

t4

t3

t4

.

In general, each nonempty line consists of three parts:

Indentation Type [Features]

with:

Indentation consists of a number of spaces. We strongly suggest to use
spaces, not tabs, since tabs are always considered to be equivalent to
8 spaces and this won’t necessarily be what you see in your editor.2

The subtypes to each type are listed below that type at a consistent
level of increased indentation just as headings and subheadings are
indented in an outline. So, if a type t occurs at indentation level I,
then there must be a positive n such that all of the subtypes of t oc-
cur at indentation level I + n. For each type, a different indentation
level n may be chosen for the subtypes, though in general, it will be
preferable to chose an indentation level of 3 or 4 spaces and use that
level consistently.3

Type is syntactically a term. It is the name of the type to be specified in
the current line. Each informative line must contain at least a type
name. A type may never occur twice as the subtype of one and the
same supertype. It can, however, occur as a subtype of two different
supertypes, i.e., for multiple inheritance. In this case the type should
be proceeded with an ampersand (&).4 A type name must always
start with a lower case letter.

2Also, be aware when mixing tabs and spaces: If you type in a space and then a tab, the
space may become invisible on the screen, but still counts when calculating the indenta-
tion level!

3We feel that the advantage of this approach is that it allows the hierarchical nature of
the type hierarchy to be seen without too much obscuring syntax. A purely graphical type
hierarchy interface would be even better, but this is as close as we could come to a graph-
ical presentation within the confines of ASCII. It must also be admitted that using level of
indentation to indicate subtypes a certain level of complexity. It is no longer possible to
give a BNF definition of the type hierarchy since the level-of-indentation must be passed
around as a context sensitive feature.

4The ampersand is not necessary but it is recommended. Our experience has shown
that unintended multiple inheritance, by accidently using the same type name for dif-
ferent purposes, is a common error. If the ampersand is omitted, the system will give a
non-fatal error message.

T2.1 Signature Input Format T4-3

Features consists of a possibly empty number of terms of the form
feat:val each two separated by white space. feat is the name of
a feature and val is the name of the type appropriate for this fea-
ture. As with the types, a feature name must always start with a lower
case letter. If a feature is specified for a type, all its subtypes inherit
this feature without any need for the user to say so explicitly. But he
still can, if he wants. There is also a case of downward inheritance.
If all the subtypes of a type share a feature, this feature will be in-
troduced on the common supertype. The type appropriate for this
feature at the supertype must then be the disjunction of all the types
appropriate for the feature on the subtypes. Often, though, such a
disjunction of types may be expressed as a semantically equivalent
single type.

If the � is divided into several parts, the additional information is
hooked into the first, root hierarchy in the following way. Each part con-
sists of a type where to hook the information into and its subtypes spec-
ified in just the same manner as in the first hierarchy part. Therefore the
format looks like

type hierarchy

Type
Indentation Type [Features]
. . .
Indentation Type [Features]
.

The first line after type hierarchy consists of a single type, the type to
which the following additional hierarchy should be linked. Thus this type
must have occurred before. Since the type is used as a hook, no feature
specifications are allowed here. The following lines are type specification
lines obeying the rules explained above. All types of the first indentation
level are regarded as new subtypes of the type to be hooked up to. Re-
specifying an identical subtype of one and the same type results in a syn-
tax error even if the second entry specifies features non-existing on the
first entry. To give an example, here is the same type hierarchy as above
specified in three pieces:

type_hierarchy

bot

s1 f:t1

s2 f:t2

s3 f:t3

s4

T4-4 Signature files

t1

t4

t2

t4

t3

t4

.

... % some other stuff

type_hierarchy

s1

s4 f:t4

.

... % some more stuff

type_hierarchy

s2

s4

.

Finally since each type should be specified only once, cases of multi-
ple inheritance need a special key word to signal to the compiler that the
re-occurrence of this type is indeed intended. The key word is the & (am-
persand) which may be placed in front of the type name when the type
multiply inherits. It is left to the user where he wishes to place the &, that
means, it is immaterial, whether the & is placed in front of all or some ap-
pearances of the type, or whether at the first appearance or at later ones.
It is recommended that the & is used, but this is not mandatory.

Chapter 3

Signature Compilation

Efficiently unifying two objects or types, which corresponds to finding
their most general common extension in a partially ordered set of ob-
jects/types, is of central importance for ensuring the efficient processing
of typed feature structures in general. Penn (2000) shows that every op-
eration necessary for computing the closure of attributed type signature
specifications in the logic of typed feature structures (Carpenter, 1992)
can be reduced to matrix arithmetic. ALE uses these matrix operations to
efficiently compute type inheritances and least upper bounds at compile
time.

3.1 Subsumption Matrices and Transitive Closure

It has been shown (Aı̈t-Kaći et al., 1989) that partially ordered types can be
represented in the form of a bit-vector encoding.

Definition 1 Given a partially ordered set, hP;vi, and a total ordering of
P ’s elements, p1; p2; : : : ; pjpj, the subsumption matrix, S, of P is a jP j � jP j
Boolean matrix, where Si;j = 1 iff pi v pj.

We can use the ith row of S to encode the type pi, with unification corre-
sponding to a bit-wise AND. For instance, the subsumption matrix of the
type hierarchy in Figure 3.1 is given in Figure 3.2. The AND of the rows for
a and d yields the row e, for example.

In practice, however, we do not initially have access to this information
and we need to compute that. What we do have access to is the immediate
subsumption relation that is specified in type subsumption declarations,

6 Signature Compilation

e

b c

a d

?

Figure 3.1: An example partial order of types

? a b c d e
? 1 1 1 1 1 1
a 0 1 1 1 0 1
b 0 0 1 0 0 0
c 0 0 0 1 0 1
d 0 0 0 0 1 1
e 0 0 0 0 0 1

Figure 3.2: The subsumption matrix, S, of Figure 3.1

with reflexive transitive closure being implicit. We can build a base sub-
sumption matrix, H, in the same way, by using the immediate subsump-
tion relation. The question is then how to obtain S from H quickly. The
base subsumption matrix in Figure 3.2 is given in Figure 3.3.

? a b c d e
? 0 1 0 0 1 0
a 0 0 1 1 0 0
b 0 0 0 0 0 0
c 0 0 0 0 0 1
d 0 0 0 0 0 1
e 0 0 0 0 0 0

Figure 3.3: The base subsumption matrix, H, of Figure 3.1

One way to achieve this is a reflexive-transitive closure, by directly fill-
ing in the diagonal ofH with 1s (reflexive) and multiplying the result by it-
self until it reaches a fixed point, S (transitive). This fixed point is reached
after no more than jP j iterations.

3.2 Monoids, Rings, Quasi-Rings, and Semirings 7

3.2 Monoids, Rings, Quasi-Rings, and Semirings

To understand the underlying mathematics of signature compilation, we
need to understand the algebraic structures of monoids, rings, quasi-
rings, and semi-rings.

Definition 2 A monoid is a structure hP; �; ei such that:

� P is a set closed under �: a � b 2 P , for all a; b 2 P ,

� � is an associative binary operator: a�(b�c) = (a�b)�c, for all a; b; c 2 P ,
and

� e 2 P is an identity for �: e � a = a � e = a for all a 2 P .

Definition 3 A quasi-ring is a structure hP;�;
; �0; �1; i such that:

� hP;�; �0i is a monoid,

� hP;
; �1i is a monoid,

� �0, is an annihilator of
: a
 �0 = �0
 a = �0 for all a 2 P , and

�
 distributes over�: a
 (b� c) = (a
 b)� (a
 c) and (b� c)
 a =
(b
 a)� (c
 a), for all a; b; c 2 P .

Definition 4 A ring is a quasi-ring with an additive inverse, i.e., for all a 2
P , there exists b 2 P such that a� b = b� a = �0.

If P is a quasi-ring, then multiplication of matrices is well-defined and
has certain nice properties such as associativity and the existence of an
identity.

Definition 5 Given a quasi-ring, Q = hP;�;
; �0; �1i, an m � n matrix, A,
over Q, and an n� p matrix, B, over Q, then A � B (matrix multiplication)
is the m� p matrix, C over Q such that:

ci;j =
nM

k=1

ai;k
 bk;j:

BXOR andBOR are both Boolean quasi-rings. BXOR is also a Boolean ring;
BOR is not. BOR is a closed Boolean semi-ring:

Definition 6 A closed semiring is a quasi-ring, hP;�;
; �0; �1i, such that:

8 Signature Compilation

� � is idempotent: a� a = a, for all a 2 P ,

� P is closed under countable infinite summaries, a1 � a2 � : : :, which
are well-defined,

� associativity, commutativity, and idempotence extend to infinite
summaries, and

�
 distributes over infinite summaries.

In a Boolean semiring, � corresponds to OR and
 corresponds to AND.
OR is idempotent, i.e., 1�1 = 1. This is vital for ensuring that matrix mul-
tiplication can compute a transitive closure, since transitively closed sub-
sumption should not be ‘turned off’ by immediate subsumption chains
on more than one subtyping branch. So we need idempotence in the un-
derlying Boolean quasi-ring. XOR is not idempotent; so the Boolean ring
is not the correct structure to use.

3.3 Topological Sorting

Before creating a subsumption matrix for a type hierarchy, ALE needs to
topologically sort the types. The topological sorting of the types in a type
hierarchy ensures the placement of more general types before more spe-
cific ones. This is performed through a depth-first traversal of the hier-
archy. For example, to topologically sort the type hierarchy presented in
Figure 3.1, we start at ?. Once we have added ? to our list of topologi-
cally sorted types, we continue to a, then b. Since b does not have any
subtypes, we go back to a and move to c. Carrying on in the same fashion
and adding new types to the list will result in [?, a, b, c, e, d]. Building a
subsumption matrix based on this sorting results in an upper-triangular
sparse matrix meaning that the lower left quadrant of the matrix consists
only of zeros as in figures 3.2 and 3.3.

3.4 Zero-Counting by Quadrants

The algorithm used in ALE is a specialized sparse matrix multiplication
algorithm for semirings. Sorting of the rows and columns of the matrix
takes place through the standard depth-first topological sorting algorithm

3.4 Zero-Counting by Quadrants 9

provided in the last section. In such matrices,1 the transitive closure of the
matrix can be calculated as:

A B
0 C

!�

=

A� A�BC�

0 C�

!

An algorithm to efficiently calculate this has been specially developed to
make use of the sparseness property of these matrices.

Two functions are used to recursively divide a matrix evenly into quad-
rants. For any i and n such that 1 � i � n, let dn(i) be defined such that:

dn(i) =

8><
>:

0 i = 1
ddn=2e(i) + 1 1 < i � dn=2e
dbn=2c(i� dn=2e) + 1 i > dn=2e

In addition, for any d � dn(i), let qdn(i) be defined such that:

qdn(i) =

8><
>:
n d = 0 (thus i = 1)

qd�1dn=2e(i) d > 0; i � dn=2e

qd�1bn=2c(i� dn=2e) d > 0; i > dn=2e

One way of looking at them is as measures defined on a balanced binary
tree with n leaves. Given the ith leaf from the left, there will be some sub-
trees for which i is the leftmost leaf. In that case, dn(i) is the least depth of
such a subtree, and qdn(i) is the total number of leaves that such a subtree
at depth d has.

Given a matrix M , we shall say that a submatrix is rooted at M [i; j] iff
[i; j] is its leftmost, uppermost coordinate in M .

Given i, j, m and n such that 1 � i � m, and 1 � j � n, let
vhm;ni(i; j) = max(dm(i); dn(j)). When we divide an m � n matrix M
evenly into quadrants, then the largest quadrant rooted at M [i; j] will be

q
vhm;ni(i;j)
m (i) � q

vhm;ni(i;j)
n (j) in size. It can be proven that if m and n differ

by no more than 1 in the original matrix, then these two dimensions will
differ by no more than 1.

Now, given a Boolean matrix M , there is a unique matrix Z(M) over
the non-negative integers such that the value of Z(M)[i; j] is the size of
the largest zero-quadrant rooted at M [i; j] in the largest quadrant rooted

1Note that the corresponding Boolean algebra for these matrices is a semiring where
1 � 1 = 1 because as mentioned above, in a Boolean semiring, the additive operator �
corresponds to OR.

10 Signature Compilation

atM [i; j]. If this largest zero-quadrant is not square, then we use the larger
of its dimensions as the value. As a simple example, consider the 4 � 4
identity matrix as M :

M =

0
BBB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1
CCCA Z(M) =

0
BBB@

0 1 2 1
1 0 1 1
2 1 0 1
1 1 1 0

1
CCCA

Note that the 1s in M are replaced by 0s in Z(M)—there are no zero-
quadrants rooted at those coordinates. Also notice that many values of
Z(M) can be inferred from other values. The fact that Z(M)[1; 3] is 2, for
example, tells us thatZ(M)[1; 4], Z(M)[2; 3], andZ(M)[2; 4] must be 1, and
vice versa. It is perhaps useful to conventionally write Z(M) with as few
values as can be used to infer the rest of the matrix:

Z(M) =

0
BBB@

0 1 2 �
1 0 � �
2 � 0 1
� � 1 0

1
CCCA

This convention accentuates the sparseness of the original matrix M .

3.5 Prolog Representation of ZCQ Matrices

In Prolog, we represent the Zero-Counting-Quadrant (ZCQ) Matrices dis-
cussed above using the data structure presented in this section.

� zcm(A,B,D,C) is the basic data structure. Each argument in zcm/4

stands for a quadrant in the matrix. The correspondence is shown
in Figure 3.4. This is a recursive structure which means that each
one of A, B, C, or D is itself a zcm/4 or any of the other data structures
presented below.

A B
D C

Figure 3.4: Matrix quadrants
corresponding to arguments in
zcm(A,B,D,C)

3.6 Transitive Closure with ZCQ 11

� The number 0 stands for a sparse matrix of 0s.

� zcu(A,B,C) represents an upper-triangular matrix as shown in Fig-
ure 3.5. Because it is an upper-triangular matrix, we already know
that D is 0. The values of A and C need only be either zcu/3 them-
selves or 1. The value of B can be zcm/4 or any of the base cases
mentioned below.

A B
0 C

Figure 3.5: An upper triangular ma-
trix corresponding to zcu(A,B,C)

� Base Cases:

– The number 1 stands for a 1� 1 matrix of 1.

– zc12(A,B) is a 1� 2 matrix shown in Figure 3.6

A B

Figure 3.6: A 1�2matrix correspond-
ing to zc12(A,B)

– zc21(A,D) stands for a 2� 1 matrix shown in Figure 3.7

A
D

Figure 3.7: A 2�1matrix correspond-
ing to zc21(A,D)

3.6 Transitive Closure with ZCQ

To transitively close a matrix in its ZCQ-representation, we first recurse on
its diagonal quadrants, as suggested by (*), to obtain A� and C�. We then
compute A�BC� with two matrix multiplications. Matrix multiplication
in ZCQ is given by the quadrant-based recursive formulation:

A B
C D

!
E F
G H

!
=

AE +BG AF +BH
CE +DG CF +DH

!

12 Signature Compilation

Summation in ZCQ is given by a coordinate-wise min operation. In ad-
dition to the size-one base cases, the efficient implementation of ZCQ in-
cludes in both summation and multiplication a sparse case, in which the
value of Z(M) is checked first against the dimensions of the submatrices
being multiplied. In this context, the base case of multiplication thus al-
ways returns 0 (indicating a non-zero element).

3.7 Compiling Appropriateness Conditions

The closed Boolean semiring, BOR, suffices for processing simple partial
orders of types with no features, often called type hierarchies. For type
signatures with feature appropriateness conditions and value restrictions
on those features, this is not enough however.

We can think of 0 and 1 inBOR as constituting a very small type hierar-
chy, as shown in Figure 3.8. If> corresponds to 1, and? to 0, then unifica-
tion in this hierarchy corresponds to Boolean OR. We can also write this
as in Figure 3.9, in which the trivial type hierarchy, consisting of just ?,
has been bottom-lifted to add a new bottom, ?. Because bottom-lifting
preserves meet-semi-latticehood, we can trivially extend unification, t,
to any P [f?gwhere P is a finite meet semi-lattice. Now, we need some-
thing to correspond to AND:

atb =

(
? if a = ? or b = ?
a t b otherwise

>

?

Figure 3.8: The Boolean type hi-
erarchy

?

?

Figure 3.9: The trivial type hi-
erarchy lifted to produce the
Boolean hierarchy

Definition 7 Let hP;vi be a finite meet semi-lattice. Then Q(P) = hP [
f?g;t;t;?;?i, is the closed semiring induced by P .

Notice that we can define this for all P , not just the trivial type hi-
erarchy, because in all type hierarchies, t and therefore its extension to
P [f?g and to t, are total functions, and there is a least element. As can
easily be verified:

3.7 Compiling Appropriateness Conditions 13

>

e

b c

a d

?

?

Figure 3.10: The induced closed semiring, Q(P), constructed from Fig-
ure 3.1

Proposition 1 For all finite meet semi-lattices P with a greatest element,
Q(P) is a closed semi-ring.

The existence of a greatest element ensures that t and t are closed in
P [f?g. Without loss of generality, we can assume that the greatest ele-
ment, >, does not explicitly appear in P , and that it does not occur any-
where else in the signature, e.g., in appropriateness conditions. > can be
smashed onto any such P , and is typically implemented as type unifica-
tion failure in the original signature. Figure 3.10 shows the type hierarchy
in Figure 3.1?-lifted and>-smashed to form its induced closed semiring.

The benefit of using P (Q) is that it allows us to generalize to other
computations on signatures that require matrices with types in them
rather than just 0s and 1s. The subsumption matrix of P can still be con-
structed using? and? in place of 0 and 1, respectively.

3.7.1 Feature Introduction

In the logic of typed feature structures, appropriateness conditions take
the form of a restriction on which types can bear a particular feature, and
which types that feature’s value can have.

Definition 8 A type signature is a quadruple, hP;v; F;Ai, where hP;vi is
a finite meet semi-lattice, F is a set of features, and A : F � P * P is a
partial function such that:

14 Signature Compilation

� (Feature Introduction)
for every F 2 F , there is a most general type intro(F) 2 P such that
A(F; intro(F))#,2 and

� (Upward Closure / Right Monotonicity)
if A(F; t)# and t v u, then A(F; u)# and A(F; t) v A(F; u).

A(F; t) is defined on those types, t, that can bear the feature F, and its value
is a type that must subsume the type of the value of F at t.

Feature Introduction eliminates a source of disjunction in inferring
types from feature names in descriptions. By having a unique introducing
type, it is possible to apply appropriateness in the other direction imme-
diately to infer some of the other features that must also exist, along with
the types of their values.

In practice, signature declarations specify appropriateness only by
declaring (1) where a feature is introduced, along with the type its value
must have and (2) where a feature takes on a value whose type cannot be
inferred to be the least type that satisfies Upward Closure and/or Right
Monotonicity given its value on supertypes. The type to which a feature’s
value is constrained is called a value restriction. Figure 3.11, for example,
is Figure 3.1 with appropriateness declarations added. F is appropriate to

e

b
F: c
G: ?

c

a
F: ?

d
H: b

?

Figure 3.11: An example type signature

a, for example, with value restriction, ?. Because F is appropriate to a, it
is also appropriate to b, c and e, although b refines the value restriction to
c. b has two appropriate features because it also introduces G. e has two
appropriate features by Upward Closure because H was introduced at d.

2#means defined.

3.7 Compiling Appropriateness Conditions 15

F G H
? ? ? ?
a ? ? ?
b c ? ?
c ? ? ?
d ? ? b
e ? ? ?

Figure 3.12: The value declaration matrix of Figure 3.11

In order to enforce this view of appropriateness conditions on P , we
can build a matrix over Q(P) for these declarations:

Definition 9 Given a set of types, P , a set of features, F , and a partial func-
tion of appropriateness declarations D : F � P * P , the value declaration
matrix for D over F and P is a jP j � jF j matrix, V , over Q(P), in which
Vi;j = u if there exists a u 2 P such that D(Fj; ti) = u, and Vi;j = ? if there
is no such u.

The uniqueness of u, when it exists, is guaranteed by the fact that D is
a partial function. The value declaration matrix for Figure 3.11 is shown
in Figure 3.12. The entry for type d, feature H is b because H is declared as
appropriate to d with its value restricted to b.

Notice that ? is being used here as a place-holder for pairs of type, t
and feature, F, for which F is not appropriate to t. We use? rather than >
so that feature introduction (with a value restriction of ? or greater) still
respects Right Monotonicity.

Definition 10 The value restriction matrix of P is R = ST � V .

Premultiplying V by the transpose of S closes the appropriateness
declarations under subsumption. Vi;j is thus something other than ?
iff feature j is appropriate to type i. The value restriction matrix of Fig-
ure 3.11 is shown in Figure 3.13. Notice that the entry for type e, feature
H is also b because e inherits H from d. Using the value restriction matrix,
we can then express the condition on Feature Introduction:

Definition 11 Æ : P [f?g ! f?;?g is the characteristic function for P ,
such that:

Æ(t) =

(
? if t 2 P ,
? if t = ?

16 Signature Compilation

F G H
? ? ? ?
a ? ? ?
b c ? ?
c ? ? ?
d ? ? b
e ? ? b

Figure 3.13: The value restriction matrix of Figure 3.11

F G H
? ? ? ?
a ? ? ?
b ? ? ?
c ? ? ?
d ? ? b
e ? ? ?

Figure 3.14: The introduction matrix of Figure 3.11

Proposition 2 R satisfies the feature introduction restriction iff for all i,
there exists a j, such that ~Æ(RT

i) = Sj.

Æ projects the elements of Q(P) back onto the closed Boolean semi-ring,
according to whether they belong to P . Feature Introduction is satisfied
iff, after component-wise projection, every column of R is the same as
some row of S. Rows of S encode types as the upward closed sets that they
subsume. The columns of R have non-? values for the types to which
a feature, F, is appropriate; and we know that that set is upward-closed,
having left-multiplied by ST . If that set is one of the rows of S, then that
row corresponds to a least type, which is intro(F).

Along the way, we can also compute those introducing types:

Definition 12 The introduction matrix, I, of P is a jP j � jF j matrix in
which Ij;i = Vj;i when j is the j specified for i in Proposition 2, and ? else-
where.

The introduction matrix for Figure 3.11 is given in Figure 3.14. The entry
for type b, feature F is ? because, although b places a non-inferable value
restriction on F, it does not introduce F.

3.7 Compiling Appropriateness Conditions 17

d

b
F: f

c
F: g

h

a
F: ?

f g

?

Figure 3.15: A type signature with consistent value restrictions

F
? ?
a ?
b f
c g
d ?
f ?
g ?
h ?

Figure 3.16: The value declaration matrix of Figure 3.15

3.7.2 Value Restriction Consistency

Because of Right Monotonicity, join-reducible types can not only multi-
ply inherit features, but also inherit value restrictions on the same feature
from two or more different branches; and these must be consistent. Fig-
ure 3.15 shows an example of this. Right Monotonicity from b and c re-
quires F to be appropriate to d with a value of both f and g. In Figure 3.15,
this is consistent—the value of F at d must be of type h. Without h, it
would not be consistent. We can use value restriction matrices to enforce
this consistency check as well.

Proposition 3 The value restrictions of P are consistent iff there is no i,j
for which Ri;j = >.

> corresponds to inconsistency in the original signature.
The value declaration matrix for Figure 3.15 is given in Figure 3.16. The

value restriction matrix of Figure 3.15 is given in Figure 3.17. Without h,

18 Signature Compilation

F
? ?
a ?
b f
c g
d h
f ?
g ?
h ?

Figure 3.17: The value restriction matrix of Figure 3.15

the entry for d would have been>.

3.7.3 Appropriateness Cycles

All types must have a finite most general satisfier, a finite least informative
feature structure of that type that respects appropriateness conditions.
This means that appropriateness conditions may not conspire so as to
require a feature structure of type t to have a proper substructure of type
either t or a subtype of t. Very often, the appropriateness conditions will
allow a subtype of t to occur, but that is not the same thing. Non-empty
lists, for example, have a tail appropriate to lists, of which non-empty lists
are a subtype. That makes lists a recursive data type, but lists still have
finite most general satisfiers. The former kind of appropriateness cycle
can very naturally be described using R.

Definition 13 The convolution matrix of R, C, is a jP j � jP j matrix over
Q(P) such that Ci;j = ? if there exists a k such that Ri;k = tj, and Ci;j = ?
otherwise.

Proposition 4 P has an appropriateness cycle iff there exists an i such that
C�
i;i = ?, where C� is the (non-reflexive) transitive closure of C.

Ci;j = ? means that type tj is accessible as a substructure by some fea-
ture from structures of type ti. By transitively closing C, we extend that
accessibility to finite paths of features, and so can detect whether ti is ac-
cessible from ti. Because we convoluted C from R, which was upward
closed by left-multiplication with ST , we detect accessibility to subtypes
of ti as well. The convolution of Figure 3.17 is given in Figure 3.18 (0 and 1
are used for readability). The entry for row b, column f is ?, because f is

3.7 Compiling Appropriateness Conditions 19

? a b c d f g h
? 0 0 0 0 0 0 0 0
a 1 0 0 0 0 0 0 0
b 0 0 0 0 0 1 0 0
c 0 0 0 0 0 0 1 0
d 0 0 0 0 0 0 0 1
f 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 0

Figure 3.18: The convolution of Figure 3.17

accessible from b along the feature F. In this case, the transitive closure of
C is the same as C itself, because all types that occur as value restrictions
of features are atomic, i.e., they have no features of their own.

In practice, this transitive closure can be computed directly from R,
without explicitly constructing C.

3.7.4 Join Preservation Condition

Not all type signatures are statically typable. This means that there are
some signatures for which the result of unifying two feature structures
that obey appropriateness must be reverified as obeying appropriateness.
Although these signatures are technically valid ones, systems that process
with LTFS normally check for static typability because of the computa-
tional cost of this run-time verification. Signatures that are not statically
typable are those that do not satisfy the following condition:

Definition 14 A signature, hP;v; F;Ai, satisfies the join preservation con-
dition iff for all consistent t; u 2 P and F 2 F :

A(F; t t u) =8>>><
>>>:
A(F; t) tA(F; u) if A(F; t)# and A(F; u)#
A(F; t) if only A(F; t)#
A(F; u) if only A(F; u)#
anything otherwise

Proposition 5 hP;v; F;Ai satisfies the join preservation condition iff for
all i; j for which Ji;j = ?, and Ui;j = tk, Ri~tRj~t(S

T I)k = Rk.

20 Signature Compilation

Viewed in terms of R, join preservation is a linear dependence con-
dition among consistent types—recall that in Q(P), t corresponds to the
additive operator. In a join-preserving signature, joins cannot add new
information to the system, apart from introducing new features.

3.8 Subtype Covering

As discussed in the user’s guide, TRALE assumes that subtypes exhaus-
tively cover their supertypes. To recapitulate, let us review the example
provided in the user’s guide.

t1
F: +
G: �

t2
F: �
G: +

t
F: bool
G: bool

Figure 3.19: A sample deranged type signature

In the hierarchy depicted in Figure 3.19, there are no t objects with
identically typed F and G values as in the following feature structures:

2
4F +

G +

3
5
2
4F �

G �

3
5

TRALE does not accept such undefined combinations of feature values as
valid. However, if TRALE detects that only one subtype’s product of values
is consistent with a feature structure’s product of values, it will promote
the product to that consistent subtype’s product. Thus, in our example, a
feature structure:

2
664

t
F +

G bool

3
775

will be promoted automatically to the following. Note that the type itself
will not be promoted to t1.

3.8 Subtype Covering 21

2
664

t
F +

G �

3
775

This section shows how subtype covering is handled in TRALE. Types
whose feature values are not exhaustively covered by their subtypes’ fea-
ture values (such as t in the above example) are called deranged types.

At the highest level, TRALE performs the following steps during signa-
ture compilation in order to compute subtype covering.

1. Find all the subtypes Sub of supertype Super.

2. Create a base subsumption graph representation of the subtype re-
lations found.

3. Topologically sort the graph and reverse the result so that more spe-
cific types come first (see section 3.3).

4. For each type t, find the number of maximal types that are sub-
sumed by t.

5. For each type t, determine the status of every type for the purpose
of classifying deranged types (to be discussed below).

These steps can be seen in the following code snippet:

compile_deranged_assert :-

!,findall(Super-Sub,(non_a_type(Super),

imm_sub_type(Super,Sub)),SubGEdges),

vertices_edges_to_ugraph([],SubGEdges,SubG),

top_sort(SubG,RevSortedTypes),

reverse(RevSortedTypes,SortedTypes),

compute_maxcount(SortedTypes,SubG),

compute_deranged(SortedTypes,SubG).

Here we focus on the last two steps, namely, compute_maxcount/2 and
compute_deranged/2.

3.8.1 Computing maxcount of each type

Maxcount counts the number of maximal types subsumed by every type.
The maxcount of every maximal type as well as a_/1 atoms is 1. The

22 Signature Compilation

maxcount of a non-maximal type t is the cardinality of the union of the
sets of maximal subtypes covered by the immediate subtypes of t, as given
by the base subsumption graph. For example, in the type signature of Fig-
ure 3.20, the maxcount of d, e, and f is 1 because they are maximal types.
The maxcount of b and c is 2 as they cover fd, eg, and fe, fg respectively.
The maxcount of a, then, will be jfd, eg[fe, fgj = jfd, e, fgj = 3.

d e f

b c

a

Figure 3.20: A sample type hierarchy with multiple inheritance

3.8.2 Classifying Deranged Types

Types are classified in two categories: normal, and deranged. Normal
types are non-deranged types that can be treated as maximal (even if they
are not) when checking a potentially deranged supertype. All maximal
types are normal. Atoms, because they are downward-closed, are not de-
ranged. We do not add an entry for atoms (including a_ atoms) to the
database.

As mentioned above, a deranged type is one whose map of appropri-
ate value restrictions is not exhaustively covered by the maps of appropri-
ate value restrictions of its maximally specific subtypes. When checking
potentially deranged supertypes, these types must be replaced by a mini-
mal covering of normal subtypes. The predicate deranged/2 indicates the
status of every type for the purpose of classifying deranged types.

A map is a product of types, such as that found in a set of appropriate
features. maxcountMap counts the number of maximal maps subsumed
by every map. A maximal map is one that has a maximal type in every
dimension (i.e., feature). MaxcountMap of a map is the product of the
maxcount of every dimension. For example, type t in Figure 3.19 will have
amaxcountMap of four corresponding its four possible subtypes, only two
of which are present as designated subtypes of t.

Then we need to identify which one of the maps cover a_ atoms, and
delete those from the root map. This is because the a_ atoms have infinite
subtypes.

3.8 Subtype Covering 23

We then replace all deranged types with their non-deranged subtype
covers with normalise_cover/2.

Chapter 4

Description Compilation

The description compiler in ALE is responsible for compiling feature
structure descriptions into Prolog code. Carpenter (1992) defines a de-
scription as follows:

Definition 15 (Descriptions) The set of descriptions over the collection
Type of types and Feat of features is the least set Desc such that:

� � 2 Desc if � 2 Type

� > 2 Desc

� � : � 2 Desc if � 2 Path, � 2 Desc

� �1
:
= �2 2 Desc if �1; �2 2 Path

� � ^ ; � _ 2 Desc if �; 2 Desc

The most basic kind of description is a simple type �. Such a descrip-
tion applies to objects which are of the type �. Since ? 2 Type, ? is a de-
scription, and it describes any feature structure while >, which must be
explicitly defined to be a description, is not satisfied by any feature struc-
ture. In practice, > is used to denote failure in unification. A description
of the form � : � applies to objects whose value for the path � satisfies
the description �. A description of the form �1

:
= �2 is taken to mean that

the value of the object that you get by following the path �1 is structure-
shared to the value of the object that you get by following the path �2.
Conjunction and disjunction are interpreted in the usual way. Descrip-
tions are used in various places in a grammar including phrase-structure
rules, lexical entries, constraints, macros, and procedural attachments.

Description compilation is performed in four steps as follows:

26 Description Compilation

� Serialization

� Sorting

� Peephole optimization

� Code Generation

These steps are described in the following sections.

4.1 Serialization

The first thing that the compiler needs to do, during description compila-
tion, is to translate a description into a series of instructions that tell the
compiler what code needs to be generated. This step is called serializa-
tion.

Six kind of instructions are generated in this step. These are instruc-
tions for types, variables, feature structures, inequations, functions, and
disjunctions. The syntax of these instructions is provided in Table 4.1.

Description Instruction
Types type Path, Type

Variables var Path, Var

Feature Structures fs Path, FS

Inequations ineq Path1, Path2

Functions fun Rel, Arity, ArgPaths, ResPath

Disjunctions or Path, (Code1; Code2)

Table 4.1: The syntax of serialized instructions

Path refers to the feature path that leads to the item in question. To
illustrate, let us go through an example. Suppose we want to compile the
feature structure below:

phrase,

dtrs:(hc_struct,

hdtr:synsem:local:cat:(head:H

subcat:append(NDS,MS)),

ndtr:synsem:local:cat:subcat:NDS),

synsem:local:cat:(head:H,

subcat:MS)

4.2 Sorting 27

This feature structure will result in the following instructions. The num-
bers are added for ease of reference.

1: type [],phrase

2: type [dtrs],hc_struct

3: var [head,cat,local,synsem,hdtr,dtrs],H

4: var 0,NDS

5: var 1,MS

6: fun append,2,[0,1],

[subcat,cat,local,synsem,hdtr,dtrs]

7: var [subcat,cat,local,sysem,ndtr],NDS

8: var [head,cat,local,synsem],H

9: var [subcat,cat,local,synsem],MS

All instructions start with a terminal path, which is a path of length 0
refering to the root of a description. The terminal path is written as [].
Therefore, the first instruction means that the root of the feature struc-
ture being compiled is of type phrase. Instruction 2 states that there is
a path from the root through dtrs that leads to the type hc_struct. In-
struction 3 says that the path [head,cat,local,synsem,hdtr,dtrs] leads
to variable H. Note that paths are written in the reverse order of what
is customary in linguistics. Paths are discussed in more detail in the
next section. Instructions 4 and 5 inform the compiler that two vari-
ables, namely, NDS and MS have been encountered and they have been as-
signed the numbers 0 and 1. In the instruction number 6, we see these
variables being used inside a function. This instruction says that the
path [subcat,cat,local,synsem,hdtr,dtrs] leads to a function called
append with an arity of two, and that the function makes use of variables
0 and 1 that have been previously seen. The last three instructions show
where else the previously seen variables are used.

4.2 Sorting

In this phase, the compiler goes through the instructions and using its
knowledge about the type signature on which the grammar is based, it
gathers all the necessary information about the description. Before we go
any further, we need to define the concept of mode.

When compiling a description, ALE needs to keep track of the informa-
tion that it has about that description at any given time. This information
may not refer to just one feature structure sometimes. For instance, if a

28 Description Compilation

description is used in the context of a phrase-structure rule, it may con-
tain variables that have scope over the whole rule. All of the information
that ALE has about a description within the current variable scope context
(i.e., a phrase-structure rule, complex-antecedent constraints, or simply
a line of ALE code) is referred to as mode. We can think of mode as a par-
tial function from the union of all paths and variables to totally well-typed
feature structures.

Definition 16 (mode) Given a set of paths �, a set of variables V , and a set
of totally well-typed feature structures TTF , we havemode : �[V * TTF .

In ALE, mode is represented as paths for terms. We call this Mode. A
slightly different kind of Mode is used to keep track of the information ALE

has about variables.

Definition 17 (VMode) A Variable Mode (VMode) is a triple
hFS; F lag; CBSafeiwhere:

� FS is a feature structure;

� F lag = fseen; trickyg;

� CBSafe = ftrue; falseg.

VMode holds for each variable a feature structure FS that is the most gen-
eral satisfier of that variable depending on its context, a F lag that says
whether the variable is seen or tricky (to be discussed shortly), and a
CBSafe flag that says whether it is safe to bind that variable at compile-
time or not.

When sorting, ALE starts with a minimal Mode (typically ?), and be-
gins going through the instructions adding information as necessary.
Let us continue working through our running example from the previ-
ous section. The first instruction to process, then, is type [],phrase.
What we do at this point is add the most general satisfier of phrase to
Mode (in this case ?). This results in the promotion of ? to phrase

which also entails adding all the features introduced by phrase (in this
case, only DTRS; see Figure 4.1). ALE goes through the other instruc-
tions similarly. When a path is encountered, as in the second instruction
type [dtrs], hc_struct, ALE starts at the end of the path (i.e., the ter-
minal path []), and unifies the most general satisfier of the introducer of
each feature in the path with the Mode. Note that each nonterminal el-
ement in the path refers to a feature. In order to access the value of that

4.2 Sorting 29

feature, ALE needs to make sure that it has access to it, meaning that the
Mode contains the most general satisfier of the introducer of that feature.
That is why we add the most general satisfier of each element to the Mode.
Each instruction, therefore, potentially changes the Mode. If an instruc-
tion fails to modify the Mode, it is considered redundant and thus elimi-
nated. An example of this is instruction 2. In this case, ALE ends up not
adding anything to the Mode because (assuming that our type signature
includes what is depicted in Figure 4.1) all phrases have a DTRS feature
with the value restriction hc-struct.

phrase
DTRS: hc-struct

?

Figure 4.1: A portion of a type signature

After this overview, let us see how each kind of instruction is utilized
to potentially modify the Mode. A summary of the actions that ALE takes
on the face of each kind of instruction is provided in Table 4.2.

The arguments of each function are associated with two type spec-
ifications: an input type and an output type. Because ALE is a logic-
programming language, each argument in a function can potentially be
an input or an output argument. The type declarations for the arguments
of functions are written as InputType-OutputType pairs. When the user
specifies only a single type for the argument of a function, as in Type, ALE

interprets that as Type-Type. Therefore,

foo(t,u,v).

is equivalent to

foo(t-t,u-u,v-v).

When executing fun instructions, ALE does not add the type of the in-
put Mode of the function to the Mode. Instead, it just checks to see if the
path corresponding to each argument in the function has the input Mode.
For instance in the case of append 2,[0,1], it only makes sure that the
mode corresponding to the variables 0 and 1 has the type list in its Mode.

Earlier, we mentioned that the initial Mode typically starts with?. This
is true for most descriptions except type-antecedent constraints and rela-
tional calls. In the case of a type-antecedent constraint, Type cons Cons,

30 Description Compilation

Instruction Action
type Path,Type Unify the most general satis-

fier of Type with the Mode of
Path.

var Path,Var Unify the mode of Var with
the Mode of Path.

fs Path,FS Unify FS with the Mode of
Path.

ineq Path1,Path2 Do nothing.

fun Rel,Arity,ArgPaths,ResPath First check ArgPaths to see
if the most general satisfier
of the input type of each ar-
gument subsumes the Mode
of the path of that argument.
Then unify the input path
with the most general sat-
isfier of the output of that
argument.

or Path,(Code1;Code2) Do the above with each dis-
junct. Then using finite-state
automaton intersection and
type generalization, combine
the output Mode of each dis-
junct to get the output mode
of the whole disjunction.

Table 4.2: Summary of actions taken by ALE, for each kind of instruction

the initial Mode is the most general satisfier of Type. In the case of a rela-
tional call, on the other hand, the initial Mode is the most general satisfier
of the input Mode.

If during sorting adding a type to the Mode fails at some point, an error
message is displayed to the user. If the failure happens within a disjunc-
tion however, we wait to see if the other disjunction fails as well. If it does,
we complain to user; and if it does not, we will simply eliminate the dis-

4.3 Peephole Optimization 31

junct that fails together with the disjunction operator.

4.3 Peephole Optimization

After all the instructions have been generated and all the missing infor-
mation has been added to Mode, it is time to go through the instructions
again and eliminate all the redundancies before any code is generated.
This is achieved via a process called peephole optimization as follows.
Starting at the top, ALE looks at pairs of instructions and try to either elim-
inate one or merge the two together. Then it moves down by one instruc-
tion and does the same to the next pair until it has considered all instruc-
tions.

� Merging:

type Path, Type1
=) type Path, (Type1 t Type2)

type Path, Type2

Given two instructions type Path,Type1 and type Path,Type2, we
know that the two types Type1 and Type2 must be unifiable because
they share the same path; therefore, we can merge the two instruc-
tions into one: type Path, (Type1 t Type2).

� Deletion:

type Path, Type
=) ...Path ...

...Path ...

Given the instruction type Path, Type and another instruction
containing Path to a feature F, we can eliminate the first instruction
because we know Type v intro(F). This means that when trying to
get the value of F by a post-order traversal of Path, ALE has to process
the instruction type Path, Type anyway.

4.4 Code Generation

The last step in description compilation is to generate Prolog code based
on the instructions prepared during the previous steps. In the following,
we present the kind of code that is generated based on each class of in-
structions.

32 Description Compilation

� type:

These instructions are translated into a series of
add_to_type statements depending on the length of the
path. For example, type [dtrs], hc_struct will generate
add_to_type(phrase,dtrs,hc_struct). Remember that ALE

finds the most general satisfier of a description by first finding the
most general satisfier of its terminal path, in this case phrase. The
above add_to_type instruction says that we need to add the feature
dtrs with the value restriction hc_struct to the type phrase.

Two issues need to be pointed out at this point. As mentioned
before, this specific example will not find its way to the Pro-
log code because phrase types already come with the feature
dtrs with the value restriction hc_struct. The use of the ex-
ample here is only for expository purposes. Second, in prac-
tice, ALE appends the type name with add_to_type_ for effi-
ciency. Therefore, the above example would have actually appeared
as add_to_type_phrase(dtrs,hc_struct) in the generated Prolog
code.

� var:

Variables in an instruction are either seen or unseen. If a variable is
seen, then a Prolog equality is generated. Some variables are tricky,
however. This means that in a disjunction (A;B), the variable Var

has been used in A, and at compile time, it is not possible for ALE to
determine whether Var is seen in B or not. In such cases, ALE gener-
ates a shallow cut as in

var(Var) -> Var=FS; ud(Var,FS)

in B to determine whether or not Var is seen at run time; if it is un-
seen it will then equate it with the feature structure that it refers to;
otherwise, it will have to make a call to ud/2, which is unification
with dereferencing.

If a variable is unseen, then it is either CBSafe or not. Recall that a
CBSafe variable is safe to be bound at compile time. In this case,
ALE simply performs a unification at compile time using ud/2. If the
variable is not CBSafe, however, it will use Prolog equality.

� fs:

Feature structures are treated like seen variables, and therefore, they
are handled with ud/2 as well.

4.5 ALE Lexical Rule Compilation 33

� ineq:

Inequations are handled with Prolog’s dif/2 predicate, which con-
strains its arguments to represent non-unifiable values.

� fun:

Function calls are directly transferred to Prolog as function calls.

� or:

Disjunctions are handled as Prolog disjunctions.

4.5 ALE Lexical Rule Compilation

Lexical rules are formulated in the form of lex_rule/2 predicates. These
rules, which represent redundancies in the lexicon, operate on a subset of
the items in the lexicon modifying their categories and/or their phonol-
ogy/spelling. There are two lexical rule packages: one that belongs to ALE,
and another that comes with the TRALE extension. This section deals with
ALE lexical rules, which have the following format:

<RuleName> lex_rule <RewriteRule> morphs <MorphologicalRule>.

For more information on the syntax of lexical rules, refer to the user’s
guide.

During compilation, the predicate lex_rule/8 is called, when appro-
priate, to close the lexicon under the available lexical rules. This pro-
cess simply involves threading together the input and output descrip-
tions with procedural attachments and the phonological mapping rules
if they are specified. Phonological mapping rules are handled by morph/3.
More specifically, morph(Morphs,WordIn,WordOut) converts WordIn to a
list of characters; then it calls morph_chars/3 to apply a pattern speci-
fied in Morphs, and finally it converts the resulting character list back to
a word unifying it with WordOut. If Morphs contains more than one pat-
tern, morph_chars/3 uses the first one that applies and succeeds.

Chapter 5

Logical Variable Macro
Compilation

As discussed in the User’s Guide, TRALE’s logical-variable macros (unlike
ALE macros) assume structure-sharing of their variables if they are used
more than once in the definition of the macro. What TRALE does during
compilation of logical-variable macros is simply translate into ALE macros
such that structure-sharing between variables is preserved. For example,
the following logical-variable macro

foo(X,Y) := f:X, g:X, h:Y.

is translated into

foo(X,Y) macro f:(X,_A), g:(X,_A), h:(Y,_B).

The added variables _A and _B are there to enforce structure sharing
among multiple occurrences of the logical-variable macros X and Y. If a
guard declaration is given in the definition of the logical-variable macro
to restrict the type of the variables, then that is translated as a description
as in the following example:

foo(X-a,Y-b) := f:X, g:X, h:Y

foo(X,Y) macro f:(X,a,_A), g:(X,a,_A), h:(Y,b,_B)

To reiterate, the added variables _A and _B make ALE treat the variables in
the right-hand side not as logical variables but as normal Prolog variables.

Let us now see how TRALE performs this translation. First, TRALE gath-
ers all :=/2 predicates (logical-variable macros) in a list and hands them

36 Logical Variable Macro Compilation

to compute_macros/2 which in turn goes through each macro one by one
generating left-hand side arguments for a corresponding macro/2 defini-
tion with the same predicate name and arity as the left-hand side of the
original :=/2. The descriptions used as arguments in the new left-hand
side, however, are provided by add_lv_macro_descs/4.

Chapter 6

Co-routining

SICStus Prolog follows a more complicated rule for computation than tra-
ditional implementations of Prolog. Instead of simply evaluating the left-
most rule in its search path, it evaluates the leftmost unblocked rule in its
search path. This mechanism resembles co-routines in imperative pro-
gramming languages, i.e., suspending and resuming different threads of
control. SICStus Prolog provides some built-in co-routining predicates
some of which, that are relevant to our discussion here, are as follows:

� when(Condition,Goal): Block Goal until Condition is true, where
Condition is a Prolog goal with the restricted syntax:

nonvar(X)

?=(X,Y)

Condition,Condition

Condition;Condition

SICStus when/2 suspends a goal until (i) a variable is instantiated or
(ii) two variables are equated or inequated. The latter case corresponds
directly to structure-sharing and inequations in typed feature structures.
The former, if it were to be carried over directly, would correspond to
delaying until a variable was promoted to a type more specific than ?.
There are degrees of instantiation in the logic of typed feature structures,
however, corresponding to subsumption chains that terminate in a most
specific type. With signature in which this chain is of length more than
two, a more general and useful primitive is then suspending until a vari-
able is promoted to a particular type. As discussed in the User’s Guide,
ALE has its own version of when/2 which is designed for work with typed-
feature structures. Table 6.1 shows how various when/2 calls in ALE are

38 Co-routining

compiled. Conjunction and disjunction of conditionals are compiled as
conjunctions and disjunctions respectively.

Input Output
when((FS=F:Desc),

Goal)

when_type(FIntro,FS,DescGoal)

where FIntro is the introducer of F; and
DescGoal is the result of compiling Goal.

when(FS=(Path1==Path2),

Goal)

Treated as when(Y^(FS=(Path1:Y,

Path2:Y)), Goal).
when(FS=Var,Goal) when_eq(FS,Var,Goal) if Var not seen;

otherwise, unify FS and Var and call
Goal.

when(FS=Type,Goal) If Type is ?, then call Goal; otherwise,
when_type(Type,FS,Goal).

Table 6.1: Compilation of when/2

when_type(Type,FS,Goal) is used to delay Goal until variable FS

reaches type Type. To implement when_type(Type,FS,Goal), ALEactually
uses the underlying Prolog implementation of when/2. Types with no ap-
propriate features constitute the base case, in which only delaying on the
internal structure of the type’s representation (which can be as simple as
the type’s name or a compound term encoding) is necessary. For types
with appropriate features, we must ensure that our suspended Goal does
not fire in between the time when the internal representation of a feature
structure’s type is updated, and when the appropriateness conditions for
that type are enforced on the representation. To do otherwise would risk
passing a non-well-typed or even non-well-formed representation in FS

to the delayed Goal. What when_type/3 must do is thus delay on the en-
tire structure of the (well-typed) most general satisfier of its Type argu-
ment, relative just to appropriateness and the type system, i.e., without
considering any implicational constraints. That most general satisfier is
guaranteed not to have any structure-sharing since appropriateness is not
able to require this. As a result, only recursively delaying on the value re-
strictions of its appropriate features is necessary.

More specifically, when_type/3 delays the execution of Goal until such
time that FS is not a variable and Type subsumes the type of FS. If it does
not subsume the type of FS, then the execution of Goal is suspended un-
til Type is an appropriate value restriction for the type of FS. If Type and
the type of FS are not unifiable, then the when_type/3declaration is abon-

39

doned.
Another co-routining predicate used in ALE is when_eq/3. Basically,

when_eq(FS1,FS2,Goal) suspends Goal until FS1 == FS2. This is imple-
mented using Prolog when/2 together with ?=/2.

A similar co-routining predicate, when_a_(X,FS,Goal), delays the ex-
ecution of Goal until the feature structure FS becomes the argument of
the a_ atom used in X. when_a_chk/3 is a very similar predicate, but rather
than using ==/2 as in when_a_/3, it uses subsumes_chk/2 to see whether
X subsumes the argument of a_. This is necessary for checking appropri-
ateness conditions with a_/1 value restrictions, in which token-identity of
variables has no significance.

Delaying on appropriateness restrictions is performed by
when_approp(Type,SVs,Goal) which, as stated above, delays Goal

until, Type becomes an appropriate value restriction for SVs.

Chapter 7

Complex-Antecedent
Constraint Compilation

Unlike ALE that uses only type constraints (i.e., only types are allowed as
the antecedent of constraints), TRALE employs complex antecedent con-
straints. These constraints allows arbitrary function-free and inequation-
free antecedents. For a detailed discussion of these constraints, refer to
the User’s Guide.

Compilation of complex antecedent constraints is done by
compile_complex_assert/0 in three steps as follows:

1. Separate all existential quantifiers from the antecedent. Recall that
TRALE interprets the scope of existentially quantified variables in
complex antecedent constraints loosely. This step is necessary to
identify such variables.

2. Find a trigger for the antecedent (defined below).

3. Replace the constraint with one that has the trigger found in the pre-
vious step as the antecedent.

The predicate that is responsible for separating existential quantifiers
from the antecedent of a constraint is find_narrow_vars/3. For example,
consider the following call to find_narrow_vars/3.

find_narrow_vars(A^B^C(A;(B,C)),Antec,Vars)

This will unify Antec with A;(B,C), and Vars with [C,B,A].

42 Complex-Antecedent Constraint Compilation

The next step is to find a trigger for the complex antecedent. The
trigger is the most specific type whose most general satisfier sub-
sumes the most general satisfier of the antecedent. The predicate
find_trigger_type/3 is responsible for finding the trigger. There are five
possibilities, as follows:

� trigger(�) = � where � 2 Type

� trigger(x) = ?where x is a variable

� trigger(F) = intro(F) where F 2 Feat and intro(F) is the intro-
ducer of F

� trigger(�1 ^ �2) = trigger(�1) t trigger(�2)

� trigger(�1 _ �2) = trigger(�1) u trigger(�2)

The final step is to assert a kind of type-antecedent constraint for the
trigger. The difference between this and a regular type-antecedent con-
straint is that in the former, the constraint only applies to a subset of ob-
jects of the specified type: those that match the description given in the
original complex-antecedent.

Let us suppose there is a predicate, whenfs(X=Desc,Goal), which de-
lays Goaluntil Xwas subsumed by the most general satisfier of description
Desc. Thus all principles � =) (^ �) could be converted into:

trigger(�) =) x ^ whenfs((x = �); ((x =) ^ �))

This typically involves compiling unifications of feature structures into
unifications of their term encodings plus a type check to see whether one
or more constraint consequents need to be enforced.

For example, if we formulate the Finiteness Marking Principle (FMP)
for German as the following complex-antecedent constraint (assuming
the type signature depicted in Figure 7.1):

synsem:loc:cat:(head:verb,marking:fin)

*> synsem:loc:cat:head:vform:bse

then we can observe that the antecedent is a feature value description
(F:�), so the trigger is intro(SYNSEM), the unique introducer of the SYNSEM

feature, which happens to be the type sign. We can then transform this
constraint, as follows:

43

sign
SYNSEM:mod-synsem
QRETR: . . .
QSTORE: . . .

synsem
LOC: local
NON-LOC: non-local

mod-synsem local
CAT: category

. . .

?

Figure 7.1: Part of the signature underlying the FMP constraint

sign cons X goal whenfs((X=synsem:loc:cat:(head:verb,

marking:fin)),

(X=synsem:loc:cat:head:vform:bse)).

The effect of the hypothetical whenfs/3 predicate is achieved by
ALE’s coroutining predicate, when_type/3 (see Chapter 6), and farg/3.
Given when_type(Type,FS,Goal), ALE delays Goal until FS is of type Type.
farg(F,X,FVal) binds FVal to the argument position of term encoding X

that corresponds to the feature F once X has been instantiated to a type
for which F is appropriate.

The corresponding type-antecedent constraint generated for our ex-
ample is thus as follows:

sign cons X

goal (farg(synsem,X,SynVal),farg(loc,SynVal,LocVal),

farg(cat,LocVal,CatVal),farg(head,CatVal,HdVal),

when_type(verb,HdVal,(farg(marking,CatVal,MkVal),

when_type(fin,MkVal,

(X=synsem:loc:cat:head:vform:bse))))).

The above constraint now waits until the value of the HEAD feature of
SYNSEMjLOCjCAT in a sign is verb and the value of its MARKING fea-
ture is fin before it enforces the constraint, which is unifying X with
synsem:loc:cat:head:vform:bse.

Chapter 8

TRALE Lexical Rule Compiler

Vanessa Metcalf, Detmar Meurers and Markus Dickinson, Ohio State Uni-
versity 1

T8.1 Introduction

T8.1.1 Background

In the framework of Head-Driven Phrase Structure Grammar (HPSG, Pol-
lard and Sag, 1994) and other current linguistic architectures, linguistic
generalizations are often conceptualized at the lexical level. Among the
mechanisms for expressing such generalizations, so-called lexical rules
are used for expressing so-called horizontal generalizations (cf. Meurers,
2001, and references cited therein).

Generally speaking, horizontal generalizations relate one word-class
(e.g., passive verbs) to a second one (e.g., their active counterpart). A lexi-
cal rule specifies that for every word matching the description on the left-
hand side of the rule (the input) there must also be a word matching the
description on the right-hand side of the rule (the output). Lexical rules
in HPSG are generally interpreted based on the understanding that prop-
erties not specified in the output description are assumed to be identical
to the input of a lexical rule, which is sometimes referred to as framing.
Lexical rules can be thought of in a static sense, as capturing generaliza-
tions about the lexicon, or in a dynamic sense, as licensing derived lexical
entries.

1 c2003, Vanessa Metcalf, Detmar Meurers and Markus Dickinson

T43-2 TRALE Lexical Rule Compiler

The lexical rule compiler implemented for the TRALE system encodes
the treatment of lexical rules proposed in Meurers and Minnen (1997).
The underlying idea of the approach is to make computational use of the
generalizations encoded in lexical rules, instead of expanding out the lex-
icon at compile time, as in the common approach also available in the
TRALE system. The lexical rule compiler of Meurers and Minnen (1997)
takes a basic lexicon and a set of lexical rules to produce a set of lexical
entries which is modified to license not only the base lexical entries, but
also all possible derivations. The lexical rule compiler approach thus has
two advantages over an approach that complies out the lexicon: the re-
sulting lexicon is much smaller, and it allows for lexical rules that apply
recursively, and thus can result in infinitely large lexicons.

T8.1.2 The lexical rule compiler

The lexical rule compiler consists of the four steps shown in figure 8.1. A
full discussion of this setup is provided in Meurers and Minnen (1997); we
provide a brief summary of the overall approach here, to be followed by a
discussion of our implementation of each step in the following sections.

In the first step we translate user-specified lexical rules to an inter-
nal Prolog representation. We generate the so-called frame predicates for
each lexical rule, which transfer all information from the input to the out-
put which is not specified in the output description. The internal Prolog
representations are specified to call the frame predicates. In the second
step, we develop a global interaction finite state automaton (global finite-
state automaton), based on a follows relation, which is itself obtained
from testing which lexical rule inputs can unify with which lexical rule
outputs. We then perform the step of actually unifying the feature struc-
tures along all paths, propagating the specifications, which may allow the
pruning of some arcs already during compile time instead of at runtime.
This global finite-state automaton encodes all possible sequences of lex-
ical rule application from a base lexical entry, on the basis of informa-
tion in the lexical rules alone. In the third step, we take each lexical entry
and run it through the global finite-state automaton, applying the lexi-
cal rules to the base or derived lexical entry (as the case may be) pruning
those arcs where unification fails. In this way we end up with a finite-state
automaton for each lexical entry. In the fourth step, we produce interac-
tion predicates based on the automata and modify the lexical entries to
call the appropriate interaction predicate, effectively grouping the lexical
entries into lexical classes. That is, since each finite-state automaton is

T8.1 Introduction T43-3

+ +lexicon signature

+

input:

output:

4

1

2

3

set of lexical rules

translation
of lexical rules

into
definite relations

translation
of lexical rule

interaction into
definite relations

lexical rule
predicates

determination of
global lexical

rule interaction

pruned
finite state
automata

abstract
lexicon expansion

finite state
automaton

lexical rule predicates
+

interaction predicates
extended
lexicon

transfer
predicates

Figure 8.1: Overview of the lexical rule complier

T43-4 TRALE Lexical Rule Compiler

simply a pruned version of the original global finite-state automaton, we
can easily check to see if an identical finite-state automaton has already
been translated to an interaction predicate. If so, we forgo translating the
current finite-state automaton, calling the previously asserted interaction
predicate in the current lexical entry instead.

The lexical entries that ultimately result from this process are encod-
ings of base lexical entries which also call the finite state automaton for
their word class. This finite-state automaton encodes each possible se-
quence of lexical rule application as a path through the automaton, where
the traversal of an arc results in the application of some lexical rule, the
arcs leaving a particular state represent all possible lexical rule applica-
tions at that point, and every state is a final state. The start state cor-
responds to the base lexical entry, and every other state corresponds to
some derived lexical entry, which is the output of some lexical rule, and
may (possibly) serve as input to others. Thus, the lexical entry, as a whole,
licenses any word object whose feature specifications unify with those at
some point along a path in the finite-state automaton.

While we do provide general descriptions of the current state of im-
plementation, the primary focus of this reference manual is lexical rule
interpretation and the generation of frame predicates.

Before we begin discussion of frame generation, we define the terms
feature description and feature structure. By feature description we refer to
compound terms in ordinary TRALE syntax. Such terms are specified by
the user, and may be partial representations with respect to type values
and appropriate features. By feature structure, we refer to TRALE’s internal
representation, in which all type values and appropriate feature values are
represented. A variety of built-in TRALEpredicates can be called to obtain
information about, or add information to, a feature description.

T8.2 Step One: Generating Frames

In this first step of the compiler, we assert lexical rule predicates corre-
sponding to each user-specified lexical rule, in addition to frame predi-
cates for each lexical rule. Generally speaking, frames specify which fea-
ture values in the input are equated with the corresponding value in the
output, and, when called, the frame predicates achieve the transfer of this
information from one lexical entry (the input) to a derived lexical entry
(the output).

In terms of input to the actual process of frame generation, we are

T8.2 Step One: Generating Frames T43-5

working with two feature descriptions (lexical rule input and output),
which may or may not be of the same type. When a feature appropriate
to the type of both lexical rule input and output is not mentioned in the
output description, we ensure transfer of the input specification to the
output via a path equality in the frame predicate. The process of frame
generation is recursive, since the (possible) need for path equalities to
transfer information applies not only at the top level, but along all paths
and subpaths mentioned in the output description. At any level, that is,
even when we are working with feature structures or descriptions embed-
ded in our original input, we refer to the current input to the process as
lexical rule input and output.

The frame predicates have three arguments: the first identifies the
associated lexical rule, while the second and third (referred to as IN and
OUT, respectively) are feature structures of type word (or some maximally
specific subtype of word). Path equality in TRALE is realized by means of
variables. For feature values that demand a path equality (as described
above), we assign the same variable as the value of that feature in both IN

and OUT. By unifying the input of the lexical rule with IN and the output
of the lexical rule with OUT, “transfer” is achieved.

Two aspects of the task of frame generation here make it relatively
complicated: disjunction in the descriptions, and types. We discuss issues
related to disjunction in section T8.2.1, and the interpretation of types
in the input and output of a lexical rule with respect to framing in sec-
tion T8.2.2.

T8.2.1 Disjunction in the input and output specifications

While our treatment of disjunction in the lexical rule specifications is con-
sistent with ordinary interpretation of disjunction in TRALE, there are sev-
eral aspects of that interpretation worth discussing in this particular con-
text.

First, it should be noted that disjunction in a description is a compact
representation of two distinct feature descriptions, and so disjunction in
the input or output descriptions of a lexical rule is actually a compact rep-
resentation of what could be two distinct lexical rules. Second, TRALE’s
syntax does not include named disjunction. For example, an input de-
scription a;b with an output description c;d does not restrict the possible
mappings of input to output to a to c and b to d. Instead, such a speci-
fication allows fours possible mappings of input to output: a to c, a to d,
b to c, and b to d. A disjunction in the input or output of a lexical rule

T43-6 TRALE Lexical Rule Compiler

means that we will need to calculate a frame corresponding to each dis-
junct. Each disjunction in either input or output multiplies the number
of frames needed by two.

Further, TRALE’s internal feature structure representation does not in-
clude disjunction. If asked to translate the the user-specified description
(a;b) to a feature structure, Prolog will return a. The feature structure
b is obtained by asking for more solutions. The disjunctive possibilities
with regard to a feature description can be generated by means of code
which utilizes a failure-driven loop calling TRALE’s translation predicate
and then collects the results, or by means of code which step-wise mul-
tiplies out the disjunctions, yielding some number of disjunctionless fea-
ture descriptions.

In our implementation of the algorithm, we deal with disjunction in
the input and output of a lexical rule differently, based on the kind of rep-
resentation we want to work with during the compilation process. Be-
cause we only make use of the internal representation of the input dur-
ing processing, and not the original user-specified description, we use a
failure-driven loop to generate all possible input feature structures. Be-
cause we want to know what the user has specified in the output, which is
not possible to know from the internal representation of that description,
we work with feature description representations of the output during
processing. We have implemented code which takes a feature description
possibly containing disjunction as input, and returns a list of disjunction-
less descriptions. We then then generate a list of frames for each input-
output pair.

T8.2.2 Interpreting lexical rule descriptions

A lexical rule can apply to a variety of lexical entities. While each of these
lexical entities must be described by the input of the lexical rule in or-
der for the rule to apply, other properties not specified by the lexical rule
can and will vary between lexical entries. Feature structures correspond-
ing to lexical entities undergoing the lexical rule therefore may differ in
terms of type value and appropriate features. Frames carrying over prop-
erties not changed by the lexical rule need to take into account different
feature geometries. Since framing utilizes structure sharing between in-
put and output, we only need to be concerned with the different kinds of
objects that can undergo a lexical rule with regard to the paths and sub-
paths mentioned in the output description. Specifically, when the objects
undergoing lexical rule application differ with regard to type value along

T8.2 Step One: Generating Frames T43-7

some path mentioned in the output description, we may need to take into
account additional appropriate attributes in framing. Each such possibil-
ity will demand its own frame.

We provide a truthful procedural realization of the formal interpreta-
tion of lexical rules defined in Meurers (2001). Generally speaking, the in-
put description of a lexical rule specifies enough information to capture
the class of lexical entries intended by the user to serve as inputs. The
output description, on the other hand, specifies what should change in
the derivation. All other specifications of the input are supposed to stay
the same in the output.

In the spirit of preserving as much information as possible from input
to output, we generate frames on the basis of species (=most specific type)
pairs; that is, we generate a frame (an IN-OUT pair) on the basis of a maxi-
mally specific input type, and a maximally specific output type, subtypes
of those specified in, or inferred from, the lexical rule description. In this
way we maintain tight control over which derivations we license, and we
guarantee that all possible information is transferred, since the appropri-
ate feature list we use is that of a maximally specific type. We create a pair
of skeleton feature structures for the species pair, and it is to this pair of
feature structures that we add path equalities. We determine the appro-
priate list of species pairs on the basis of the types of the input and output
descriptions.

The first step in this process is determining the types of the input and
output of the lexical rule. We then obtain the list of species of the input
type, and the list of species of the output type. We refer to these as the
input species list, and the output species list, and their members as input
and output species. At this point it will be helpful to have an example to
work with. Consider the type hierarchy in figure 8.2.

a

pppppppppppppp

OOOOOOOOOOOOOO

b

;;
;;

;;
;;

��
��

��
��

c

��
��

��
��

<<
<<

<<
<<

d

;;
;;

;;
;;

e f g h i

Figure 8.2: An example hierarchy illustrating the interpretation

We can couch the relationship between the input and output types in
terms of type unification, or in terms of species set relations. In terms of

T43-8 TRALE Lexical Rule Compiler

unification, there are four possibilities: the result of unification may be
the input type, the output type, something else, or unification may fail.
In the first case the input type is at least as or more specific, and the in-
put species will be a subset of the output species. In the second case the
output is more specific and the output species will be a subset of the in-
put species. In the third case the input and output types have a common
subtype, and the intersection of input and output species is nonempty.
In the fourth case the input and output types are incompatible, and the
intersection of their species sets is empty.

Given in figure 8.3 are examples of all four cases, using the example
signature, showing input and output types, the result of unification, their
species lists, and the species-pairs licensed by the algorithm described
below. Calling these separate “cases” is misleading, however, since the
algorithm is the same in every case.

Case 1 Case 2 Case 3 Case 4

Input type c a b c
Output type a c c d

Unify to c c f fail
Input species f, g e, f, g, h, i e, f f, g

Output species e, f, g ,h, i f, g, f, g h, i
Species pairs f-f, g-g e-f, e-g, f-f, e-f, e-g, f-f f-h, f-i, g-h,

g-g, h-f, h-g, g-i
i-f, i-g

Figure 8.3: Examples for the four cases of mappings

If a (maximally specific) type value can be maintained in the output, it
is. Otherwise, we map that input species to all output species. In terms of
set membership, given a set of input speciesX, a set of output species Y ,
the set of species pairs P thus can be defined as:

P = fhx; xi j x 2 X ^ x 2 Y g [fhx; yi j x 2 X;x 62 Y ^ y 2 Y g

This definition translates to a simple algorithm in the code itself:

� For an input species x, if x is a member of the output species list,
then calculate a frame for x-x.

� Otherwise, calculate a frame for every x-y pair, where y is an output
species.

T8.2 Step One: Generating Frames T43-9

T8.2.3 Overview of code for frame generation

Taking the input and output descriptions for a particular lexical rule, we
first generate a list of possible feature structures corresponding to the in-
put description. (As discussed in section T8.2.1 there will be multiple fea-
ture structures if there is disjunction in the description.) We then derive
from the output description a list of disjunctionless descriptions, and ob-
tain the internal representation of each.2 For each input-output pairing
(where “output” is itself a description-feature structure pair), we obtain
the list of species pairs for which we want to generate a frame predicate.
In a species pair, we refer to the input species as IN and the output species
as OUT.

There may in fact be more than one frame necessary per species pair
because of embedded feature structures which themselves require multi-
ple “small” frames. For each of these, a copy of the larger frame (an IN-OUT

pair) is created, and the small IN and OUT are assigned as feature values
in the larger frame. Therefore, we obtain a list of frames for each species
pair.

Given a particular species pair, we create skeleton feature structures
for the IN and OUT types that constitute the pair, and obtain a list of ap-
propriate features for the OUT type. We then walk through the output
description, removing mentioned features from the appropriate features
list. Concomitantly, when we find a feature with a non-atomic value dur-
ing the walk-through, we call the process of frame generation for the de-
scription which is the value of that feature in the output, generating a list
of “small” frames, which are incorporated into the larger one (as men-
tioned in the previous paragraph). This is accomplished by obtaining
the embedded feature structures from the frames and unifying the small
frames with these. This process of walk-through, removing mentioned
features from an appropriate-feature list and incorporating small frames
into large ones, applies recursively along every path and subpath in the
output description.

Once we have walked through the entire output description at a par-
ticular level of embedding, path equalities are added for features which
are appropriate for the input type and have not been removed from the

2We actually translate a copy of each description into a feature structure, since
desc2fs/3 adds type information to Prolog variables, thereby making them unrecogniz-
able as such to var/1. We rely on Prolog variables in the descriptions to signal the pres-
ence of a path equality in the lexical rule descriptions. We keep track of this information
in order to avoid creating undesirable path equalities in the frames.

T43-10 TRALE Lexical Rule Compiler

appropriate features list of the output.

T8.3 Step Two: Global Lexical Rule Interaction

In this step, we construct a global interaction finite-state automaton
(global finite-state automaton) encoding all possible sequences of lexical
rule application, taking into account only the information specified in the
lexical rules themselves. This step of the algorithm has three components.
We first calculate and assert the follows relation. The follows relation as-
sociates each lexical rule with the list of lexical rules that can apply to the
output of the first. We calculate the follows relation by test-unifying the
output specifications of one rule with the input specifications of all lex-
ical rules, and associating the first lexical rule id with a list of ids where
unification succeeded.3

Based on the follows relation, we build a finite-state automaton with
lexical rule identifiers labelling the arcs. Arcs corresponding to each lex-
ical rule originate at the start state, and for any state, the lexical rule la-
belling the arc terminating at that state determines the arcs that will orig-
inate there, according to the follows relation. In the case that a lexical rule
may apply to its own output, we include an arc whose start state and end
state are the same, and flag the existence of a cycle in the representation
of the arc. Every state is ultimately intended to be a final state, though
this is not encoded in the representation at this stage of the compilation
process.

The final component of this step involves the propogation of specifi-
cations. That is, we prune unusable arcs based on the actual unification
of output and input specifications along each of the paths through the
automaton.

We use arc(Arc Label,Rule Label,Prefix List,Follow List,Cycle Flag) to
build the automaton because there exists a convenient relationship be-
tween this representation and the follows relation definitions. Specif-
ically, given the Rule Label argument for a particular arc, we can find
the follows/2 clause which has that Rule Label as its first argument. We
can then directly incorporate the follows list from the follows/2 clause

3To obtain the correct follows relation for a lexical rule, however, information from
the input specification should to be transferred to the output, ideally via a generalized
frame predicate. Currently, we include a lexical rule on the follows list if unification suc-
ceeds utilizing at least one of the clauses defining the frame predicate for the lexical rule
in question.

T8.4 Step Three: Word Class Specialization T43-11

as the fourth argument in arc/5, and then recursively work through
that list to assert arc/5 clauses for each member. However, for the
stage of processing that involves actual unification of feature structures
along all paths, we associate feature structures with particular states,
and store this information in a table. At this point, it becomes more
convenient to work with a state-based representation of the automa-
ton. Therefore, we translate from the arc representation given above to
arc(StateIn Label,StateOut Label,Rule Label,Cycle Flag). The automaton
that serves as input to step three is defined via arc/4.

T8.4 Step Three: Word Class Specialization

In this step, we associate every lexical entry with a unique identifier, and
taking the global finite-state automaton which is the output of step two
as input, create a local finite-state automaton for each lexical entry. This
step is similar in execution to the second component of step two, since
we unify the lexical feature structure with the lexical rule specifications
along all paths in the automaton, prune arcs which cannot apply to that
lexical entry and its derivations, and create a table in which states are
associated with feature structures. We alter the automaton representa-
tion to incorporate the lexical identifier, resulting in output of the form
lex arc(Lex ID,StateIn Label,StateOut Label,Rule Label,Cycle Flag).

T8.5 Step Four: Definite Relations

In the final step of the lexical rule compilation process, we convert the
output of step three into the Prolog definite relations referred to as in-
teraction predicates. We then alter the lexical entries to call the interac-
tion predicates, which in turn call the lexical rule predicates. In order to
avoid storing redundant interaction predicates, we collect lexical entries
into word classes. That is, we determine which lexical entries are asso-
ciated with the same local finite-state automaton, and alter those lexical
entries to call a single interaction predicate. To do this, we translate the
local finite-state automata into compound terms. This allows us to find
identical finite-state automata via simple term unification.

When we assert an interaction predicate, we also assert its canonical
representation. This gives us an inventory of finite-state automata repre-
sented as compound terms, which we can check any finite-state automa-

T43-12 TRALE Lexical Rule Compiler

ton against. If the local finite-state automaton associated with a particular
lexical entry has already been translated to an interaction predicate (and
asserted as such), we do not translate the finite-state automaton in ques-
tion to an interaction predicate, retracting it instead. If, on the other hand,
none of the previously asserted compound terms unify with the canoni-
cal representation of the finite-state automaton in question, we assert the
compound term. Additionally, we translate the arcs of that local finite-
state automaton to clauses defining an interaction predicate, asserting
each clause in turn. In either case, we assert a new representation of the
current lexical entry, modified to call the preexisting or newly translated
interaction predicate, as the case may be.

Chapter 9

Bottom-up Parsing

ALE’s parser makes use of the EFD-closure parsing algorithm introduced
in Penn and Munteanu (2003). Unlike the textbook chart parsing algo-
rithm and Carpenter’s algorithm employed in earlier versions of ALE (Car-
penter and Penn, 1996), this algorithm reduces the number of copying
operations for edges to a constant number of two per non-empty edge.
Penn and Munteanu (2003) show that this algorithm performs better than
standard bottom-up Prolog parsers on a variety of grammar shapes.

9.1 The Algorithm

EFD stands for Empty First Daughter. The EFD-closure algorithm as-
sumes that a grammar is “EFD-closed” meaning that the first daughter of
all the grammatical rules in the grammar are non-empty. The definition
of an EFD-closed grammar is provided below:

Definition 18 An (extended) context-free grammar, G, is empty-first-
daughter-closed (EFD-closed) iff, for every derivation N)� w, there is
a derivation of N)� w in which no left-corner of any non-preterminal
subtree is �.

At compile time, ALE transforms any phrase-structure grammar to an
EFD-closed grammar. The EFD-closure process is explained in section
9.2 below. In this section, we step through the parsing of a sentence based
on the simple grammar presented below. For ease of exposition, atomic
categories are used instead of feature structures.

s ===> [np,vp].

46 Bottom-up Parsing

vp ===> [vbar].

vp ===> [vbar,pp].

vbar ===> [vt,np].

np ===> [det,nbar].

nbar ===> [n].

nbar ===> [n,pp].

pp ===> [p,np].

lex(john,np).

lex(nudged,vt).

lex(a,det).

lex(the,det).

lex(man,n).

lex(cane,n).

lex(with,p).

The sentence that we are parsing is “John nudged the man with a
cane.” The top-level predicate of the parser is rec/2 which takes a list
of words in its first argument and returns a feature structure correspond-
ing to that sentence in its second argument. Therefore, to parse the above
sentence ALE calls rec/2 as follows:

rec([john,nudged,the,man,with,a,cane],FS)

This algorithm proceeds breadth-first, right-to-left through the in-
put string at each step applying the grammar rules depth-first, matching
daughter categories left-to-right. The first step is then to reverse the in-
put string, and compute its length (performed by reverse_count/5) and
initialize the chart:1

rec(Ws,FS):-

retractall(edge(_,_,_)),

reverse_count(Ws,[],WsRev,0,Length),

CLength is Length - 1,

functor(Chart,chart,CLength),

build(WsRev,Length,Chart),

edge(0,Length,FS).

retractall(edge(_._._)) resets the chart by removing all asserted
edges. reverse_count(Ws,[],WsRev,0,Length) reverses the input list
and computes its length. In the case of our example, it will return this:

1Note that for ease of exposition, we are showing a simplified version of the code here.

9.1 The Algorithm 47

reverse_count([john,nudged,the,man,with,a,cane],[],

[cane,a,with,man,the,nudged,john],0,7)

Two copies of the chart are used in this presentation. One is repre-
sented by a term chart(E1,...,EL), where the ith argument holds the list
of edges whose left node is i. Edges at the beginning of the chart (left node
0) do not need to be stored in this copy, nor do edges beginning at the end
of the chart (especially, empty categories with left node and right node
Length). This is called the term copy of the chart. The other copy is kept
in a dynamic predicate, edge/3, as a textbook Prolog chart parser would.
This is called the asserted copy of the chart.

Neither copy of the chart stores empty categories. These are assumed
to be available in a separate predicate, empty_cat/1. Since the grammar is
EFD-closed, no grammar rule can produce a new empty category. As you
may have noticed already, lexical items are assumed to be available in the
predicate lex/2.

In our example, CLength evaluates to 6, which means the correspond-
ing term copy of the chart gets initiated as chart(_,_,_,_,_,_). The
predicate, build/3, then actually builds the chart. The definition of
build/3 is shown below:

build([W|Ws],R,Chart):-

RMinus1 is R-1,

(lex(W,FS),

add_edge(RMinus1,R,FS,Chart)

; (RMinus1 =:= 0 -> true

; rebuild_edges(RMinus1,Edges),

arg(RMinus1,Chart,Edges),

build(Ws,RMinus1,Chart)

)

).

build([],_,_).

The precondition upon each call to build(Ws,R,Chart) is that Chart
contains the complete term copy of the non-loop edges of the parsing
chart from node R to the end, while Ws contains the (reversed) input
string from node R to the beginning. Each pass through the first clause of
build/3 then decrements Right, and seeds the chart with every category
for the lexical item that spans from R-1 to R. The predicate add_edge/4 ac-
tually adds the lexical edge to the asserted copy of the chart, and then

48 Bottom-up Parsing

closes the chart depth-first under rule applications in a failure-driven
loop. add_edge/4 initiates a loop because it calls rule/4, which in turn
calls match_rest/5, which then calls add_edge/4 again. It is also a failure-
driven loop because the number of rules with any given leftmost daughter
is finite causing rule/4 to fail after all the relevant rules have been pro-
cessed. When it has finished, if Ws is not empty (RMinus1 is not 0), then
build/3 retracts all of the new edges from the asserted copy of the chart
(with rebuild_edges/2, described below) and adds them to the R-1st ar-
gument of the term copy before continuing to the next word.

add_edge/4 matches non-leftmost daughter descriptions from either
the term copy of the chart, thus eliminating the need for additional copy-
ing of non-empty edges, or from empty_cat/1. Whenever it adds an edge,
however, it adds it to the asserted copy of the chart. This is necessary be-
cause add_edge/4 works in a failure-driven loop, and any edges added to
the term copy of the chart would be removed during backtracking:

add_edge(Left,Right,FS,Chart):-

assert(edge(Left,Right,FS)),

rule(FS,Left,Right,Chart).

rule(FS,L,R,Chart):-

(Mother ===> [FS|DtrsRest]), % PS rule

match_rest(DtrsRest,R,Chart,Mother,L).

match_rest([],R,Chart,Mother,L):-

add_edge(L,R,Mother,Chart).

match_rest([Dtr|DtrsRest],R,Chart,Mother,L):-

arg(R,Chart,Edges),

member(edge(NewR,Dtr),Edges),

match_rest(DtrsRest,NewR,Chart,Mother,L)

; empty_cat(Dtr),

match_rest(DtrsRest,R,Chart,Mother,L).

Note that we never need to be concerned with updating the term copy
of the chart during the operation of add_edge/4 because EFD-closure
guarantees that all non-leftmost daughters must have left nodes strictly
greater than the Left passed as the first argument to add_edge/4.

Moving new edges from the asserted copy to the term copy is straight-
forwardly achieved by rebuild_edges/2:

9.2 EFD-closure 49

rebuild_edges(Left,Edges):-

retract(edge(Left,R,FS))

-> Edges = [edge(R,FS)|EdgesRest],

rebuild_edges(Left,EdgesRest)

; Edges = [].

The two copies required by this algorithm are thus: 1) copying a new
edge to the asserted copy of the chart by add edge/4, and 2) copying new
edges from the asserted copy of the chart to the term copy of the chart
by rebuild edges/2. The asserted copy is only being used to protect the
term copy from being unwound by backtracking.

The first pass of build/3on our example sentence will thus update the
term copy of the chart as follows:

chart(_,_,_,_,_,[edge(7,n),edge(7,nbar)])

This means that the parser has found an n and an nbar that span from
the edge 6 (known from the argument number in the chart) to the edge 7
(recorded by edge/2). By the time the parser reaches the first word in the
input string, Chart will contain the following data:

chart([edge(2,vt),edge(4,vbar),edge(4,vp),

edge(7,vp),edge(7,vbar),edge(7,vp)],

[edge(3,det),edge(4,np),edge(7,np)],

[edge(4,n),edge(4,nbar),edge(7,nbar)],

[edge(5,p),edge(7,pp)],

[edge(6,det),edge(7,np)],

[edge(7,n),edge(7,nbar)])

At the end of the parsing operation, the asserted copy of the chart only
has a record of the edges whose left corner is 0. This is because all the
other edges have been retracted by rebuild_edges/4 while updating the
term copy of the chart, and because there is no need to copy the asserted
copy of the edges with a left corner 0 onto the term copy. rec/2 uses this
to retrieve the edge that spans the whole input string.

9.2 EFD-closure

To convert an (extended) context-free grammar to one in which EFD-
closure holds, we must partially evaluate those rules for which empty cat-
egories could be the first daughter over the available empty categories. If

50 Bottom-up Parsing

all daughters can be empty categories in some rule, then that rule may
create new empty categories, over which rules must be partially evalu-
ated again, and so on. The closure algorithm is presented in Figure 9.1 in
pseudo-code and assumes the existence of six auxiliary lists:

� Es—a list of empty categories over which partial evaluation is to oc-
cur,

� Rs—a list of rules to be used in partial evaluation,

� NEs—new empty categories, created by partial evaluation (when all
daughters have matched empty categories),

� NRs—new rules, created by partial evaluation (consisting of a rule to
the leftmost daughter of which an empty category has applied, with
only its non-leftmost daughters remaining),

� EAs—an accumulator of empty categories already partially evalu-
ated once on Rs, and

� RAs—an accumulator of rules already used in partial evaluation
once on Es.

Each pass through the while-loop attempts to match the empty cat-
egories in Es against the leftmost daughter description of every rule in
Rs. If new empty categories are created in the process (because some rule
in Rs is unary and its daughter matches), they are also attempted—EAs

holds the others until they are done. Every time a rule’s leftmost daughter
matches an empty category, this effectively creates a new rule consisting
only of the non-leftmost daughters of the old rule. In a unification-based
setting, these non-leftmost daughters could also have some of their vari-
ables instantiated to information from the matching empty category.

If the while-loop terminates (i.e., if there is a finite number of empty
categories derivable), then the rules of Rs are stored in an accumulator,
RAs until the new rules, NRs, have had a chance to match their leftmost
daughters against all of the empty categories that Rs has. Partial evalua-
tion with NRs may create new empty categories that Rs have never seen
and therefore must be applied to. This is taken care of within the while-
loop when RAs are added back to Rs for the second and subsequent passes
through the loop.

9.2 EFD-closure 51

Initialise Es to empty cats of grammar;

initialise Rs to rules of input grammar;

initialise the other four lists to [];

loop:

while Es =\= [] do

for each E in Es do

for each R in Rs do

unify E with the leftmost unmatched category

description of R;

if it does not match, continue;

if the leftmost category was rightmost (unary

rule),

then add the new empty category to NEs

otherwise, add the new rule (with leftmost

category marked as matched) to NRs;

od

od;

EAs := append(Es,EAs); Rs := append(Rs,RAs);

RAs := []; Es := NEs; NEs := [];

od;

if NRs := [],

then end: EAs are the closed empty cats,

Rs are the closed rules

else

Es := EAs; EAs := []; RAs := Rs;

Rs := NRs; NRs := [];

go to loop

Figure 9.1: The off-line EFD-closure algorithm

52 Bottom-up Parsing

9.3 Parsing Complexity

All textbook bottom-up Prolog parsers copy edges out of the chart once
for every attempt to match an edge to a daughter category. Carpen-
ter’s algorithm—which traverses the string breadth-first, right-to-left and
matches rule daughters rule depth-first left-to-right in a failure-driven
loop—can in the worst case make O(nb�1) copies, where b is the maxi-
mum rule branching factor. The worst-case time complexity of Carpen-
ter’s algorithm isO(nb+1). A fixed CFG based on atomic categories can be
converted off-line to Chomsky Normal Form in which b = 2, thus resulting
in the cubic-time recognition,O(n3). The EFD-closure algorithm, as men-
tioned in the beginning of this chapter, reduces the number of copying to
2 per non-empty edge. Like Carpenter’s algorithm, however, its worst-
case time complexity is O(nb+1).

Chapter 10

Topological Parsing

This chapter presents a new formalism used in ALE for parsing with freer
word-order languages. This new formalism, which is based on a CFG-like
backbone, does not presuppose contiguity of constituents nor does it pre-
suppose any linear order. Where necessary, however, these can be explic-
itly expressed in order to provide the grammar with sufficient constraints
to allow for more efficient parsing.

This is achieved by departing from the traditional notion of con-
stituency where a single region (namely conventional grammatical cat-
egories such as NP, VP, etc.) is used to define aspects of interpreta-
tion (e.g. thematic role assignment), linear order, and contiguity. In the
topological-fields (TF) approach, two types of constituency are involved.
One type consists of the regions used to capture aspects of interpretation
only, and the other involves the regions that capture aspects of linear or-
der and contiguity. This idea was first introduced by Curry (1961) but was
not completely formalised. In Curry’s terms, the regions that capture in-
terpretation belong to the domain of tectogrammar and those responsi-
ble for linear order and contiguity belong to the domain of phenogram-
mar. Traditional grammatical categories stripped of their linear-order
and contiguity assumptions correspond to tectogrammatical categories.
As for phenogrammatical categories, we extend the notion of topological
fields used by traditional German grammarians to define contiguous re-
gions with a fixed order of constituents. The TF approach has three prop-
erties:

� Topological Linearity: All word order constraints are defined on
some linear region.

54 Topological Parsing

� Topological Locality: All discontiguities are characterised in some
local region.

� Qualified Isomorphy: Regions that captures linear order and those
that capture contiguity are the same (i.e., topological fields).

10.1 Phenogrammar

The advantage of using topological fields, which express linear prece-
dence (LP) constraints, is that they provide first-class access to units that
may not correspond to syntactic subtrees or may occur in a similar posi-
tion but not form any natural syntactic and/or semantic class. An exam-
ple of the latter is the Left Sentence-Bracket (CF) in German. This position,
which is the second traditionally identified topological field in the clause
is filled by such categories as finite verbs, complementisers, and subordi-
nating conjunctions. These do not form a natural syntactic class but oc-
cupy the same linear position. Moreover, without recourse to topological
fields it is very difficult to define this second position. Another example
is the first (topic) position, the Vorfeld (VF), which holds a variety of cat-
egories and sometimes strings of words that are only parts of syntactic
categories. An example of the traditional topological fields identified for
German is given in 4 below:1

(4)
VF CF MF VC NF

Dem Mann habe ich das Buch gegeben das ich gelesen habe.
the man have I the book given that I read have

I gave the man the book that I’ve read.

These five fields are said to describe the topology of the clause region.
In addition to the clause region, we assume that other regions can be
found upon which one can define a topology. In the case of German for
example, one can also talk about a noun-phrase regions (NPR) that con-
tains its own fields. NPRs may or may not correspond to complete NPs
in tectogrammar depending on whether or not they are contiguous. This
way, we are extending the rather flat structure of regions and giving it a
recursive structure. The need for this is made more apparent by certain
facts: for example, a NF in a clause region itself being able to contain an-
other (embedded) clause.

1VF stands for Vorfeld, CF for Complementiser Field (left sentence-bracket), MF for
Mittelfeld, VC for Verbal Complex (right sentence-bracket), and NF for Nachfeld

10.1 Phenogrammar 55

An extended CFG is used to formalise this grammar. The infix operator
topo/2 is used to define the topology of regions. For example, a topologi-
cal rule for the German clause region which is written as:

clause topo [vf,cf,mf*,{vc},{nf}]

means that a clause region contains exactly one VF followed by exactly
one CF, followed by zero or more MFs, followed by an optional VC and
an optional NF. A topological rule for the German NPR can be written as
follows:

npr topo [{sprf},adjf*,nounf,postmodf*]

The above rule states that a German NPR is made up of an optional speci-
fier field (SPRF), followed by zero or more adjective fields (ADJF), followed
by exactly one noun field (NounF), and finally zero more post-modifier
fields (PostModF).

10.1.1 Linkage

Since regions themselves can occur as fields in larger regions, we also
need a way of making that explicit in the grammar. A new class of rules
called linking rules is used for this purpose. These rules are universally
quantified on the left-hand side and existentially quantified on the right-
hand side. Therefore,

r <<-- f

states that all regions named r occur in some f, where f is a field name or
a disjunction of field names. The rule

f -->> r

on the other hand, state that all fields named f contain some r, where r is
a region name or a disjunction of region names. Two examples of linking
rules in German are provided below:

npr <<-- (vf;mf;nf)

clause <<-- nf

These rules state that all NPRs in German occur in some VF, or MF, or NF,
and all clauses in German occur in some NF. Looking back to our example
sentence above, we can now see what phenogrammatical tree these rules
together generate for that sentence. This is shown in Figure 10.1.

56 Topological Parsing

Clause

VF CF MF* VC NF

MF MF

NPR NPR Clause

SPRF NounF SPRF NounF CF MF VC

Dem Mann habe ich das Buch gegeben das ich gelesen habe

Figure 10.1: A sample phenogrammatical tree

10.2 Tectogrammar

As a result of delegating the tasks of enforcing linear precedence and
contiguity constraints to phenogrammar, tectogrammar’s only remain-
ing task is to guide semantic interpretation. Thus, our tectogrammatical
rules do not assume any order or contiguity in their daughters. However,
the formalism allows for specifying such constraints explicitly if need be.
Tectogrammatical rules are represented using *-->/2 infix operator. The
category on the left-hand side of a tectogrammatical rule represents the
mother node, and the daughters are provided (in no particular order) on
the right-hand side. The daughters should be separated by commas. For
example, all the following rule is specifying is that a sentence contains
a NP and a VP. Nothing is said about the order of these constituents or
whether they are contiguous at all.

s *--> np, vp

One may provide some conditions for the applicability of a tecto-rule
much in the same manner as DCGs. The acceptable conditions are lo-
cal covering, local matching, precedence, immediate precedence, local
compaction and inequations or other Prolog goals. The following section
discusses various structural constraints on grammar rules.

10.3 Synchronising Phenogrammar and Tectogrammar 57

10.3 Synchronising Phenogrammar and Tectogram-
mar

Synchronisation between phenogrammar and tectogrammar is achieved
through the notion of covering. Covering constraints state to what extent
and how the yield of a tectogrammatical category corresponds to that of a
phenogrammatical category. Two special kinds of covering are also used
in this formalism: matching, and splicing. These are all discussed in the
following subsections. Covering constraints can be declared either glob-
ally in a grammar file or locally inside tectogrammatical rules. The scope
of local constraints is only the rule in which they have been introduces.

10.3.1 Covering

Covering constraints state that the phonological yield of the tectogram-
matical category � consumes that of a phenogrammatical category f and
possibly more. This situation is depicted in Figure 10.2.

�

f

Figure 10.2: Covering

� Global:

– � covers fs: These constraints state that the yield of all � must
include all of fs, where fs is a field or region name or a disjunc-
tion of field or region names.

– f covered_by �: These constraints require that all f be con-
sumed by some �, where � is a tectogrammatical category or a
disjunction of tectogrammatical categories.

� Local: n covers fs: This constraint states that thenth daughter men-
tioned in the rule must include all of fs, where fs is a field name or
a disjunction of field names.

As an example, refer to the following hypothetical rule:

pp *--> p, nbar,

{2 covers npr}

58 Topological Parsing

What the above rule says is that a PP consists of a P and an NBar and
that the second daughter in the rule, namely, NBar covers an NPR. In this
context the field or region specified will be one that is topologically acces-
sible to the sponsor of the mother node. Therefore, the NPR in the above
example has to be topologically accessible to the phenogrammatical edge
that resulted in the prediction of that PP. The NBar in this rule could, in
principle, be larger than the NPR. For example, it might also contain an
extraposed relative clause.

10.3.2 Matching

Matching is a special kind of covering relation. Matching constraints state
that a given tectogrammatical category � is identical in its phonological
yield to that of a phenogrammatical category f . This situation is depicted
in Figure 10.3.

�

f

Figure 10.3: Matching

� Global:

– � matches fs: These constraints state that the yield of all � is
equivalent to that of some fs.

– f matched_by�: These constraints state that the yield of all f is
equivalent to that of some �.

� Local:

� n matches fs: Local matching is a special case of local covering. The
only difference is that in matching the daughter covering the field or
region cannot be larger than it.

An example of a local matches constraint in German grammar is:

nbar *--> nbar, rp,

{ 2 matches nf

; 2 matches postf

}

10.3 Synchronising Phenogrammar and Tectogrammar 59

This rule states that an NBar consists of another NBar as well as an
RP, which matches either a NF (extraposed) or PostF (adjacent to the head
noun that it modifies) that is accessible to the sponsor of the mother NBar.

10.3.3 Splicing

Another special case of covering relation is splicing. Splicing refers to a
situation where a tectogrammatical category � matches in its phonolog-
ical yield with more than one phenogrammatical category f1 : : : fn. This
situation is depicted in Figure 10.4.

�

f1 f2 . . . fn

Figure 10.4: Splicing

� Global:

– � matches f1+ : : :+ fn: These constraints state that the yield of
all � is equivalent to that of some f1 : : : fn concatenated.

� Local:

– n matches f1 + : : : + fn: These constraints state that the nth
daughter of the rule matches in its yield with some f1+ : : :+ fn
put together.

An example of splicing is given in the following rule:

pp *--> p, np,

{2 matches npr+nf}

The above rule states that a PP is made up of a P and a NP, which
matches the yield of some NPR and NF put together.

10.3.4 Compaction

Compaction constraints apply to tectogrammatical categories and states
that the elements in the list that is its argument be contiguous strings.
As a global constraint, compaction applies this condition to all categories
that are consistent with any of the elements in the argument list of the
constraint.

60 Topological Parsing

� Global:

– compacts(CatList) states that all tectogrammatical categories
mentioned in CatList are always contiguous strings.

� Local:

– compacts(N) states that the nth daughter mentioned in the tec-
togrammatical rule is a contiguous string. If n = 0, the the
mother node forms a contiguous string.

For example, the global rule compacts([s]) says that all Ss form con-
tiguous strings.

10.3.5 Precedence and Immediate Precedence Constraints

Precedence

Precedence constraints mean that the daughter whose index is men-
tioned on the left-hand side must be entirely located before the daughter
whose index is on the right-hand side. Note that this constraint does not
make any assumptions about the contiguity of the daughters. As an ex-
ample, one can provide the following hypothetical rule that states an NP
consists of a determiner that precedes but might not be adjacent to an
NBar with the same agreement features.

np *--> det, nbar,

{1 < 2}

Immediate Precedence

A special kind of precedence is immediate precedence, which means that
the two daughters mentioned in the constraint have to be adjacent to one
another. This only applies to the rightmost word of the first daughter
specified in the constraint and the leftmost word of the second one. This
constraint does not assume contiguity of daughters either. The following
serves as an example for this and means that an NP consists of a deter-
miner which is immediately followed by an NBar.

np *--> det, nbar,

{1 << 2}

10.4 Phenogrammatical Parsing 61

10.3.6 Topological Accessibility

The topological parser in ALE is essentially an all-paths chart parser. It
performs a phenogrammatical parse of the input string in a bottom-up
fashion and once it finds a region that is matched by a tectogrammati-
cal category, it predicts that category and performs a tectogrammatical
parse. This continues until all of the input string has been consumed and
all parses have been found.

Because this is an all-paths parser, we need to make sure that larger
tectogrammatical categories only have access to those smaller categories
that have been directly or indirectly predicted by the same entity in
phenogrammar. To do this, we have introduced the notion of sponsor-
ship. Whenever a phenogrammatical category predicts some tectogram-
matical category � by introducing an active edge into the chart, it passes
its own ID i to it. We then say that the sponsor of that active edge and all
the other active edges introduced in the course of finding � have the same
sponsor with the ID i. Active edges only have access to passive edges with
the same sponsor. This ensures that clauses and all other categories that
can be predicted from phenogrammar are largely parsed independently,
which also helps make parsing more efficient. The only time that a cat-
egory has access to another category with a different sponsor is when it
agrees to consume all of the yield of that category and not just parts of it.

For example, in the sentence (10.3.6),

(5) Ich sagte da� er den Mann geseben hat.
I think that he the man seen has
“I think that he saw the man.”

once the parser has found the embedded clause, it adds an active edge to
the chart for a sentence and passes its own ID to it. This triggers a tec-
togrammatical parse of the embedded clause. Later on, when parsing the
matrix clause, the parser can only gain access to the embedded clause
only when it has agreed to take the embedded clause as a whole. It never
gains access to the internal subtrees of it as the matrix clause has a differ-
ent sponsor. This is shown in Figure 10.5.

10.4 Phenogrammatical Parsing

Phenogrammatical parsing (or pheno-parsing for short) is performed us-
ing a bottom-up right-to-left chart parsing algorithm. As mentioned in

62 Topological Parsing

S2

NP VP2

Ich
clause2 V2 CP1

sagte
C1 S1

da�
clause1 NP1 AuxP1

er
den Mann gesehen hat

Figure 10.5: Sponsorship and Topological Accessibility

section 9.2, parsing the input string right-to-left and interpreting the rules
left-to-right eliminates the need for active edges.

The parser begins by looking up the words in the input stream in its
lexicon and finding the grammatical category/categories that the word
belongs to. Then using the matches constraints, it finds what pheno-
category/categories each one of the tecto-categories matches. Using this
information, it can then seed the chart with both tecto- and pheno-edges
as appropriate. For example, if the third word in the input string is listed
as both a pronoun and a marker in the lexicon, and we have the following
matches rules in the grammar:

pron matches (mf; vf; objf)

marker matches cf

then the following pheno-edges will be added to the chart:

pheno_edge(2,3,mf, ID1)

pheno_edge(2,3,vf, ID2)

pheno_edge(2,3,objf,ID3)

pheno_edge(2,3,cf, ID4)

where IDn stands for a unique ID for each edge. The predicate responsible
for the addition of pheno-edges to the chart is add_pheno_edge/5, which
also performs a transitive closure on the accessibility relation between the
newly added edge and all its descendents unless one of those descendents
has resulted in the prediction of tecto-category. We will talk about tecto-
edges in the next section.

10.4 Phenogrammatical Parsing 63

Each addition of an edge to the chart triggers a search in the topo rules
trying to find a corresponding parse subtree. The search is performed in
a failure driven loop using Prolog’s call stack as its search space. For in-
stance, if the grammar includes the rule:

clause topo [vf,cf,mf,vc,nf]

the addition of the edge pheno_edge(L,R,vf,ID1)will trigger the follow-
ing topo rule:

topo(L, M, vf, ID1) :-

pheno_edge(M, N, cf, ID2),

pheno_edge(N, O, mf, ID3),

pheno_edge(O, P, vc, ID4),

pheno_edge(P, R, nf, ID5),

R>L,

add_pheno_edge(clause, L, R,

[ID1-vf,ID2-cf,ID3-mf,ID4-vc,ID5-nf], _).

This predicate succeeds if a sequence of correct edges have been found
and if at least one of those edges consumes input—i.e., has not been
added to the chart because it has been declared optional somewhere in
the grammar. The list of ID-F pairs is used by add_pheno_edge/5 for topo-
logical accessibility.

In addition, if the grammar contains the following relevant linking and
matched-by rules as well:

clause <<-- nf

clause matched_by s

then the topo predicate mentioned above will have some additional
clauses accordingly, as follows:

topo(L, M, vf, ID1) :-

pheno_edge(M, N, cf, ID2),

pheno_edge(N, O, mf, ID3),

pheno_edge(O, P, vc, ID4),

pheno_edge(P, R, nf, ID5),

R>L,

add_pheno_edge(clause, L, R,

[ID1-vf,ID2-cf,ID3-mf,ID4-vc,ID5-nf], ID6),

64 Topological Parsing

bv(L, R, BV),

add_tecto_aedge(s, ID6, [], BV, 0),

add_pheno_edge(nf, L, R, [ID6-link], _).

The matched-by clause in the grammar says that the yield of all clause
regions is matched by the yield of some S. This causes the parser to pre-
dict an S whenever it finds a clause. In this topo predicate, the clause
bv(L, R, BV) converts the interval spanned by the clause region into a
bit vector BV. We record the yield of tecto-categories in bit vectors because
tecto-categories may not always be contiguous. Then it adds an active
tecto-edge for an S to the chart. The ID of the sponsoring clause is also
passed to the active edge. The empty list that is passed as the third ar-
gument of add_tecto_aedge/5 represents the keys that that edge carries
(see below). The fourth argument stands for the CanBV of the active edge,
which is the parts of the input string that it is allowed to use. The fifth ar-
gument stands for the OptBV of the edge, which is the parts of the input
string that it is allowed not to use. In this case the OptBV is 0 because the S
must consume everything that the clause has otherwise the matched-by
constraint would not hold. The add_pheno_edge has been added because
of the linking rule. It adds a new pheno-edge to the chart.

10.5 Tectogrammatical Parsing

10.5.1 Category Graphs and Head Chains

Tectogrammatical parsing (tecto-parsing) is performed after pheno-
parsing. The tecto-parsing algorithm used in ALE is a specialised head-
corner parsing algorithm. Head, in the sense that we require here, must
only be a lexical category that is sure to be found inside its phrasal cate-
gory. For example, one is sure to find a verb in all sentences. In general,
this can be a syntactic head, a semantic head, or any other obligatory and
lexical category which is computationally advantageous to look for first.

Our tectogrammatical parser is based on the one discussed in Penn
and Haji-Abdolhosseini (2002, 2003), and our tectogrammatical rules are
those of the Linear Specification Language (LSL, Goetz and Penn, 1997)
extended to incorporate topological fields and splicing; LSL itself has
a compaction constraint but does not name the resulting contiguous
fields/regions, and defines no phenogrammatical structure. Parsing with
parallel phenogrammatical and tectogrammatical structures is also very

10.5 Tectogrammatical Parsing 65

reminiscent of Ahrenberg’s (1989) much earlier proposal to separate lin-
ear precedence and contiguity from semantic interpretation in LFG pars-
ing.

Suhre (1999) presented a bottom-up parser for LSL that used an
ordered graph to represent the right-hand-sides of rules, and multi-
ple Earley-style “dots” in the graph to track the progress of chart edges
through their rules. Daniels and Meurers (2002) re-branded LSL as “Gen-
eralised ID/LP” (GIDLP), and proposed a different Earley-style parser. In
their parser, only one “dot” is used, and the order in which categories are
specified by a grammar-writer (which no longer implicitly states linear
precedence assumptions) is used to guide the search for rule daughters.
Our parser, although not Earley-style, follows Daniels and Meurers (2002)
in using this specification order as a guide. In particular, the heads of a
particular category are taken to be those lexical categories accessible by
a chain through exclusively leftmost daughters in the specification order.
In our view, however, Earley deduction is not sufficiently goal-oriented to
be suitable for parsing in a freer word-order language.

We call the chain of head daughters down to a preterminal a head
chain. For example, a head chain for S in the grammar fragment pre-
sented in Figure 10.6 is VP-V. By static analysis of the grammar, ALE can
also calculate minimum and maximum heights for each chain as well
as minimum and maximum yields at any given height for each category.
Height refers to the number of categories below a given node in a syntac-
tic tree. According to the grammar in Figure 10.6 for example, an N occurs
at height 1 because there is a lexical item under it and N’ occurs at height
2 because there are two nodes under it, namely N and a lexical item. Yield
or more precisely phonological yield refers to the number of words that a
given category encompasses. For example in the grammar in Figure 10.6,
the yield of an N’ can be either 1 (for just a N) or 2 (for a Det and an N). We
will discuss this in more detail below.

In order to calculate minimum and maximum heights and yields,
given a set of grammar rules, ALE generates a graph for those rules at com-
pile time. There are two types of nodes in each graph: category nodes (de-
picted as circles), and rule nodes (depicted as squares). Circular nodes
are called category nodes because they could be thought of as represent-
ing the left-hand-side of a rule in the grammar. Square nodes are called
rule nodes because they could be thought of as the categories in the body
(right-hand-side) of a rule. In a category graph, category nodes and rule
nodes alternate; i.e., a circular node only points to one or more square
node(s), and a square node only points to one or more circular node(s).

66 Topological Parsing

Figure 10.6 shows a small piece of grammar and the graph that ALE gener-
ates based on it.

S! VP NP
NP!N’ S
NP!N’
N’!N Det
N’!N
VP! V NP
VP! V

N!fboy, girlg
Det!fa, the, thisg
V! fsees, callsg

S

S

NP VP

NP NP VP VP

N’

N’ N’

N Det V

N Det V

Lex Empty

Figure 10.6: Some grammar rules and their graph representation

The maximum yield of categoryX at a maximum height h is:

Xmax(� h) = max
0�j�h

Xmax(j)

The minimum yield of category X at a maximum height h is:

Xmin(� h) = min
0�j�h

Xmin(j)

These are useful for cases when Xmax(h) and Xmin(h) for a given h is not

10.5 Tectogrammatical Parsing 67

defined. They also provide a convenient notation for defining the equa-
tions derived from tecto-rules.

For every categoryX,Xmax(h) is simply defined as the sum of the max-
imum yields of its daughters at h� 1 (or lower). It could be, however, that
a smaller height tree for X actually has a bigger yield than X at height
exactly h because trees at certain multiples of heights could be formed
by disjoint combinations of rules. So in the general case, the formula for
Xmax(h) takes the form:

Smax(h) = max

(
NPmax(h� 1) + VPmax(� h� 1)
NPmax(� h� 1) + VPmax(h� 1)

This ensures that the tree from which we choose the maximum yield is in
fact of height h.

We likewise define Xmin(h) as the sum of the minimum yields of its
daughters (which are at height h � 1). This is defined as the Xmin(h � 1)
of one daughter plus the Xmin(� h � 1) of other daughters. To decide for
which daughter we need to calculate Xmin(h � 1) and for which we need
to calculate Xmin(� h � 1), we have to calculate all possibilities and then
take the smallest number. For instance, Smin(h) is calculated as follows:

Smin(h) = min

(
NPmin(h� 1) + VPmin(� h� 1)
NPmin(� h� 1) + VPmin(h� 1)

Lexical items and empty categories always occur at height 0. Lexical
items always have a minimum and maximum yield of 1. Empty categories
have a minimum and maximum yield of 0. Lexical categories (pretermi-
nals) always occur at height 1 and have minimum and maximum yield of
1. These are the square nodes that directly project from the lexicon. For
acyclic rules, calculating Xmin and Xmax is very simple because acyclic
categories (such as N’ in our sample grammar) always have the same min-
imum and maximum yields and occur at the same height. For example,
an N’ always occurs at height 2 (lexical items are at height 0, and preter-
minals are at height 1); and N’min(2) = 1, N’max(2) = 2. This is because
we have N’!N and N’!N Det in this grammar fragment.

Because tecto-rules do not assume order or contiguity, performing
bottom-up parsing in the same manner as pheno-parsing is ill-advised.
Not using active edges in the parser is also not a very wise approach.
Tecto-parsing is performed top-down but in a very goal-oriented fash-
ion in order to prune search. Before an active edge is added to chart, the
parser uses head chains in order to make sure that the lexical category

68 Topological Parsing

that must necessarily be present inside a category really is present. If the
parser fails to find the head chain that is required for making the category
it is predicting, it will not add the corresponding active edge to the chart.
To prune search even further, ALE takes into account the minimum and
maximum yields of categories at any given height. If given the number of
words and explicit precedence and topological constraints ALE finds out
that it can never consume all of the input or it requires more words to
build an edge. It will not add that active edge to the chart.

10.5.2 Bit Vector Lattices

As mentioned in the previous section, an active edge contains two bit vec-
tors: CanBV and OptBV. CanBV represents the words that the edge is al-
lowed to take, and OptBV represents the words that it is allowed not to
take. At run time, we frequently see that an active edge gets added to the
chart that only slightly differs from another active edge that has already
been introduced to the chart. For example, let us assume that the chart
already includes an active edge with the CanBV 00001111 and the OptBV
11110000, and another edge with the same category and with the CanBV
00001011 and the OptBV 11110100 gets added to the chart. It is obvious
that the two edges differ only in one bit (namely the third bit): in the first
edge, the bit belongs to the CanBV, but in the second edge, it belongs to
the OptBV. In cases like this, when a new active edge differs only slightly
with an existing one, we want to make sure that we adjust our search space
so that we do not redo the search that we did when the first edge was
added to the chart. Table 10.1 shows all the possible basic situations that
may arise in such a case. For ease of exposition, we will not use actual bit
vectors here and instead use number sets to stand for the word numbers
in the input string. For example, f1,2,3g under the CanBV column means
that the edge is allowed to take the first, second, and third words from the
input string (which is equivalent to the bit vector 000111) in this example.
The last column of Table 10.1 shows the subsumption condition that must
hold in a unification-based setting. Here A stands for the category of the
first edge and B for the category of the second edge.

As is shown in Table 10.1, there are six basic situations. The rows
marked ‘a’ represent the bit vectors of the first active edge, and the rows
marked ‘b’ represent the bit vectors of the new active edge. In the first
situation, a word moves from the CanBV to the OptBV. In the second sit-
uation, a word drops from the CanBV. In the third, a word moves from
OptBV to CanBV, and in the fourth, a word drops from OptBV. In the fifth

10.5 Tectogrammatical Parsing 69

CanBV OptBV Subsumption Condition

1. a. f1,2,3g f4,5,6g
b. f1,2g f3,4,5,6g Bv A

2. a. f1,2,3g f4,5,6g
b. f1,2g f4,5,6g Av B

3. a. f1,2,3g f4,5,6g
b. f1,2,3,4g f5,6g Av B

4. a. f1,2,3g f4,5,6g
b. f1,2,3g f5,6g Av B

5. a. f1,2,3g f4,5,6g
b. f1,2,3g f4,5,6,7g Bv A

6. a. f1,2,3g f4,5,6g
b. f1,2,3,7g f4,5,6g Av B

Table 10.1: Possible relationships between the bit vectors of two similar
active edges

and sixth situation, a word is added to OptBV and CanBV respectively.
In order to understand the relationships of these situations with re-

spect to the search space that we need to cover, it helps to think of the
bit vectors in terms of lattices of word sets. Let the bottom of the lattice
stand for the set corresponding to CanBV and the top stand for the set
corresponding to CanBV _ OptBV. In this case, the order relation is de-
fined with set inclusion meaning that x < y iff x � y. For example, the
lattice corresponding to the bit vectors in Table 10.1 item 1a, is shown in
Figure 10.7.

What the lattice in Figure 10.7 means is having an active edge with the
CanBV of f1,2,3g and OptBV of f4,5,6g entails having already covered the
search spaces provided by CanBV f1,2,3,4g, f1,2,3,5g, etc. and the same
OptBV. Let us now see what happens in the first situation given in Ta-
ble 10.1. If one word moves from CanBV to OptBV, it means that we have
given our lattice a new bottom, f1,2g. The new lattice corresponding to
the new search space is shown in Figure 10.8.

The lattice of Figure 10.7 is a sub-lattice of the one in Figure 10.8,
which means that the new active edge overlaps in its search space with
that of the old one. What the parser does in this case is to adjust the
bit vectors to CanBV f1,2g and OptBV f4,5,6g thus restricting the search
space to the part of the lattice shown in dashed lines. This means that
case 1 in Table 10.1 effectively reduces to case 2.

70 Topological Parsing

f1,2,3,4,5,6g

f1,2,3,4,5g f1,2,3,5,6g f1,2,3,4,6g

f1,2,3,4g f1,2,3,5g f1,2,3,6g

f1,2,3g

Figure 10.7: The lattice representation of the bit vectors in Table 10.1 item
1a

f1,2,3,4,5,6g

f1,2,3,4,5g f1,2,3,5,6g f1,2,3,4,6g f1,2,4,5,6g

f1,2,3,4g f1,2,3,5g f1,2,3,6g f1,2,4,5g f1,2,4,6g f1,2,5,6g

f1,2,3g f1,2,4g f1,2,5g f1,2,6g

f1,2g

Figure 10.8: The lattice representation of the bit vectors in Table 10.1 item
1a

10.5 Tectogrammatical Parsing 71

The third, fourth, and fifth cases are simple. In all these cases, the
lattice representation of the new active edge is a sub-lattice of the old
one, which means that the search space has already been covered and the
parser does not need to do anything. In these cases, the edge will not be
added to the chart. It is only in the last case that the parser cannot make
use of the existing information and has to perform a full search by adding
the edge to the chart intact. This is because the lattice representation of
the new edge is completely disjoint from the old one.

Chapter 11

Generation

As pointed out in the User’s Guide, ALE uses the Semantic Head-Driven
Generation algorithm of Shieber et al. (1990). The application of this algo-
rithm to typed feature structures and ALE has been discussed in Popescu
(1996) and Penn and Popescu (1997).

11.1 The Algorithm

Semantic-head-driven generation makes use of the notion of a semantic
head of a rule, a daughter whose semantics is shared with the mother.
In semantic-head-driven generation, there are two kinds of rules: chain
rules, which have a semantic head, and non-chain rules, which lack such
a head. These two subsets are processed differently during the generation
process.

Given a feature structure, called the root goal, to generate a string for,
the generator builds a new feature structure that shares its semantic infor-
mation (using the user-defined semantics predicate with the second argu-
ment instantiated) and finds a pivot that unifies with it. The pivot is the
lowest node in a derivation tree that has the same semantics as the root.
The pivot may be either a lexical entry or empty category (the base cases),
or the mother category of a non-chain rule. Once a pivot is identified, one
can recursively generate top-down from the pivot using non-chain rules.
Since the pivot must be the lowest, there can be no lower semantic heads,
and thus no lower chain-rule applications. Just as in parsing, the daugh-
ters of non-chain rules are processed from left to right.

Once top-down generation from the pivot is complete, the pivot is
linked to the root bottom-up by chain rules. At each step, the current

74 Generation

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sentence

Figure 11.1: The initial root.

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sign

Figure 11.2: The semantics template.

chain node (beginning with the pivot) is unified with the semantic head
of a chain-rule, its non-head sisters are generated recursively, and the
mother becomes the new chain node. The non-head daughters of chain
rules are also processed from left to right. The base case is where the cur-
rent chain node unifies with the root.

The following example illustrates this better. Suppose that the gener-
ator is given the goal description:

(sentence,

sem:(pred:decl,

args:[(pred:call_up,

args:[pred:mary,pred:john])]))

Figure 11.1 shows the initial root (the most general satisfier of the input
description); and Figure 11.2 shows the template that ALE uses to find a
pivot. Next (Figure 11.3), a pivot is selected, in this case by unifying the
template with the mother category of the non-chain rule, sentence1:

sentence1 rule

(sentence,sem:(pred:decl,

args:[S]))

===>

cat> (s,form:finite,

sem:S).

We can tell that sentence1 is a non-chain rule because it lacks a sem head>

daughter, unlike, for example, the chain rule s:

11.1 The Algorithm 75

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sentence

PRED mary, PRED john< > >ARGS
PRED call_up<SEM|ARGS

sentence

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

ROOT

PIVOT

NEW ROOT

sentence1

Figure 11.3: The first pivot is found.

76 Generation

s rule

(s,form:Form,

sem:S)

===>

cat> Subj,

sem_head>

(vp,form:Form,

subcat:[SUBJ],

sem:S).

The only daughter of sentence1 becomes the new root.
The pivot chosen for that root is the lexical entry for calls, which is

obtained by applying the lexical rule, sg3, to the first entry for call in the
grammar. That pivot has no daughters, so it must now be connected by
chain rules to the new root in Figure 11.3. The chain rule, vp1, is cho-
sen, its semantic head is unified with the entry for calls, its one non-
head daughter is recursively generated (which simply succeeds by unify-
ing with the lexical entry for john), and its mother becomes the new chain
node (Figure 11.4).

Again (Figure 11.5), chain rule vp1 is chosen, its semantic head is uni-
fied with the new pivot, its non-head daughter is recursively generated
by unifying with the lexical entry for up, and its mother becomes the next
chain node.

Finally, the chain rule, s is chosen. Its non-head daughter is recur-
sively generated by unifying with the lexical entry formary, and its mother,
the new chain node, unifies with the new root (Figure 11.6). With gener-
ation below the pivot of Figure 11.3 having been completed, it is linked
to its root directly by unification, yielding the solution, mary calls john

up.

11.2 Pivot Checking

ALE’s generator uses a simple depth-first search strategy, displaying so-
lutions as it finds them. As a result, it is not complete. Following the
suggestion made in Shieber et al. (1990), ALE also checks whether there
are semantic head!mother sequences that could possibly link a poten-
tial pivot to the current root before recursively generating its non-head
daughters. If not, then the pivot is discarded. Semantic-head-driven gen-
erators that do not prune away such bad pivots from the search tree run a
greater risk of missing solutions because top-down generation of the bad

11.2 Pivot Checking 77

np
AGR sg3
SEM sem
 ARGS e_list
 PRED john

NON-HEAD
DAUGHTER

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

SEM [0]
np p

SEM|PRED up

np
AGR sg3
SEM [1]

vp
FORM finite

p
SEM|PRED up

vp
FORM finite

<SUBCAT

SEM

, >
np
AGR sg3
SEM [0]

[0][PRED mary],[PRED john]<ARGS
PRED call_up

>

vp1

NEW ROOT

< , , >SUBCAT

SEM [1][PRED mary],[0][PRED john]<ARGS
PRED call_up

>

PIVOT

NEW CHAIN NODE

Figure 11.4: First chain rule application.

78 Generation

np
AGR sg3
SEM sem
 ARGS e_list
 PRED john

NON-HEAD
DAUGHTER

p
SEM sem
 ARGS e_list
 PRED up

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

NEW ROOT

SEM [0]
np p

SEM|PRED up

np
AGR sg3
SEM [1]

p
SEM|PRED up

vp
FORM finite

vp
FORM finite

>
np
AGR sg3
SEM [0]

<SUBCAT

SEM <ARGS
PRED call_up

[0][PRED mary],[PRED john]>

vp1

< , , >SUBCAT

SEM [1][PRED mary],[0][PRED john]<ARGS
PRED call_up

vp
FORM finite

>

<SUBCAT

SEM

, >
np
AGR sg3
SEM [0]

[0][PRED mary],[PRED john]<ARGS
PRED call_up

>

vp1

NEW CHAIN NODE

OLD CHAIN NODE

Figure 11.5: Second chain rule application.

11.2 Pivot Checking 79

np
AGR sg3
SEM sem
 ARGS e_list
 PRED johnSEM [0]

np p
SEM|PRED up

np
AGR sg3
SEM [1]

PRED mary, PRED john< > >ARGS
PRED call_up<

s
SEM

p
SEM sem
 ARGS e_list
 PRED up

p
SEM|PRED up

vp
FORM finite

vp
FORM finite

>
np
AGR sg3
SEM [0]

<SUBCAT

SEM <ARGS
PRED call_up

[0][PRED mary],[PRED john]>
np
AGR sg3
SEM sem
 ARGS e_list
 PRED mary

NON-HEAD
DAUGHTER

< , , >SUBCAT

SEM [1][PRED mary],[0][PRED john]<ARGS
PRED call_up

vp
FORM finite

>

vp1

vp1

<SUBCAT

SEM

, >
np
AGR sg3
SEM [0]

[0][PRED mary],[PRED john]<ARGS
PRED call_up

>

s

NEW CHAIN NODE/ROOT

OLD CHAIN NODE

Figure 11.6: Third chain rule application and unification.

80 Generation

pivot’s non-head daughters may not terminate, even though it can never
yield solutions. This check is valuable because it incorporates syntactic
information from the mother and semantic head into the otherwise se-
mantic prediction step.

It also creates another termination problem, however, namely the po-
tential for infinitely long semantic head ! mother sequences in some
grammars. To avoid this, ALE requires the user to specify a bound on the
length of chain rule sequences at compile-time.

Chapter 12

SLD Resolution

The term resolution in logic refers to a mechanical method for proving
statements in first-order logic. It is applied to two clauses in a sentence,
and by unification, it eliminates a literal that occurs positive in one clause
and negative in the other. A literal stated in the antecedent of an implica-
tion is negative because an implication P ! Q is equivalent to :P _ Q.
Therefore, in

(6) (man(X)! mortal(X)) ^man(socrates)

we can unify socrates with X. This will give us

(7) (man(socrates)! mortal(socrates)) ^man(socrates)

which is equivalent to

(8) (:man(socrates) _mortal(socrates) ^man(socrates))

By distribution, we have

(9) (man(socrates) ^ :man(socrates)) _ (man(socrates) ^
mortal(socrates))

Since P ^ :P = false, we have

(10) man(socrates) ^mortal(socrates)

Through this resolution process, we proved mortal(socrates). Resolu-
tion with backtracking is the basic control mechanism in Prolog.1

1The above information has been adapted from http://wombat.doc.ic.ac.uk.

82 SLD Resolution

SLD resolution is a term used in logic programming to refer to the con-
trol strategy used in such languages to resolve issues of nondeterminism.
By definition, SLD resolution is linear resolution with a selection function
for definite sentences. A definite sentence has exactly one positive literal
in each clause and this literal is selected to be resolved upon, i.e., replaced
in the goal clause by the conjunction of negative literals which form the
body of the clause.

SLD resolution in ALE is identical to what Prolog does. In fact, in imple-
mentation ALE relies on Prolog for SLD resolution. For more information
on how Prolog handles nondeterminism, refer to chapter 5 of Sterling and
Shapiro (1986).

ALE compiles a clause declaration into instructions, and processes
these instructions as follows:

� Enforce the descriptions on the head arguments, in left-to-right or-
der.

� Enforce the descriptions on the arguments of the first body goal, in
left-to-right order.

� Call the first body goal.

� Repeat the last two steps on all remaining body goals.

A few built-in operators merit considerationl. =@/2 is compiled to an
equality check (using Prolog ==/2) on the Tags of the ALE data structure.
=/2 is compiled to unification. when/2 is compiled as stated in Chapter 6.
Prolog hooks are compiled directly to Prolog calls. Cut, shallow-cut and
negation-by-failure are compiled to their Prolog equivalents.

Bibliography

Aı̈t-Kaći, H., R. Boyer, P. Lincoln, and R. Nasr (1989). Efficient implemen-
tation of lattice operations. Transactions on Programming Languages
and Systems 11(1), 115–146.

Carpenter, B. (1992). The Logic of Typed Feature Structures: With Appli-
cations to Unification Grammars, Logic Programs and Constraint Res-
olution. Cambridge Tracts in Theoretical Computer Science 32. Cam-
bridge: Cambridge University Press.

Carpenter, B. and G. Penn (1996). Compiling typed attribute-value logic
grammars. In H. Bunt and M. Tomita (Eds.), Recent Advances in Parsing
Technologies, pp. 145–168. Kluwer.

Curry, H. B. (1961). Some logical aspects of grammatical structure. In Ja-
cobson (Ed.), Structure of Language and its Mathematical Aspects: Pro-
ceedings of the Twelfth Symposium in Applied Mathematics, pp. 56–68.
American Mathematical Society.

Daniels, M. and W. D. Meurers (2002). Improving the efficiency of pars-
ing with discontinuous constituents. In S. Wintner (Ed.), Proceed-
ings of NLULP’02: The 7th International Workshop on Natural Lan-
guage Understanding and Logic Programming, Number 92 in Datalo-
giske Skrifter, Copenhagen, pp. 49–68. Roskilde Universitetscenter.

Meurers, W. D. (2001). On expressing lexical generalizations in HPSG.
Nordic Journal of Linguistics 24, 161–127.

Meurers, W. D. and G. Minnen (1997). A computational treatment of lex-
ical rules in HPSG as covariation in lexical entries. Computational Lin-
guistics 23(4), 543–568.

Penn, G. (2000). The algebraic structure of transitive closure and its appli-
cation to attributed type signatures. Grammars 3, 295–312.

84 BIBLIOGRAPHY

Penn, G. and M. Haji-Abdolhosseini (2002). Topological parsing: A lineari-
sation parser specification submitted to project MilCA/A4 of the BMBF.
Technical Report.

Penn, G. and M. Haji-Abdolhosseini (2003). Topological parsing. In Pro-
ceedings of the 10th Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pp. 283–290.

Penn, G. and C. Munteanu (2003). A tabulation-based parsing method
that reduces copying. In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics, pp. ??–??

Penn, G. and O. Popescu (1997). Head-driven generation and indexing in
ALE. In Proceedings of Workshop on Computational Environments for
Grammar Development and Linguistic Engineering (ENVGRAM). 35th
ACL/8th EACL.

Pollard, C. and I. Sag (1994). Head-Driven Phrase Structure Grammar.
Studies in Contemporary Linguistics. Chicago: CSLI.

Popescu, O. (1996). Head-driven generation for typed feature structures.
Master’s thesis, Cargegie Mellon University.

Shieber, S., C. Pereira, G. van Noord, and R. Moore (1990). Semantic-head-
driven generation. Computational Linguistics 16(1), 30–42.

Sterling, L. and E. Shapiro (1986). The Art of Prolog: Advanced Program-
ming Techniques. MIT Press.

Suhre, O. (1999). Computational aspects of a grammar formalism for
languages with freer word order. Master’s thesis, Eberhard-Karls-
Universität Tübingen.

