... matrices,2.1
Note that the corresponding Boolean algebra for these matrices is a semiring where $1\oplus 1=1$ because as mentioned above, in a Boolean semiring, the additive operator $\oplus$ corresponds to OR.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...,2.2
$\mathord{\downarrow}$ means defined.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... chart:7.1
Note that for ease of exposition, we are showing a simplified version of the code here.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... below:8.1
VF stands for Vorfeld, CF for Complementiser Field (left sentence-bracket), MF for Mittelfeld, VC for Verbal Complex (right sentence-bracket), and NF for Nachfeld
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
... Prolog.10.1
The above information has been adapted from http://wombat.doc.ic.ac.uk.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.